Категории
Самые читаемые книги
ЧитаемОнлайн » Компьютеры и Интернет » Программное обеспечение » Операционная система UNIX - Андрей Робачевский

Операционная система UNIX - Андрей Робачевский

Читать онлайн Операционная система UNIX - Андрей Робачевский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 54 55 56 57 58 59 ... 130
Перейти на страницу:

Поскольку одна и та же область может использоваться несколькими процессами, для каждого процесса ядро создает связанный список структур pregion (per process region), которые в свою очередь адресуют области, используемые процессом. Указатель на список структур pregion для каждого процесса находится в записи таблицы процессов — структуре proc.

Основные поля структур region и pregion приведены на рис. 3.10.

Рис. 3.10. Управление адресным пространством процесса в SCO UNIX

Помимо указателей p_next, организующих структуры pregion в виде связанного списка, и p_reg, обеспечивающих адресацию соответствующей структуры region, в каждой структуре pregion определен набор флагов определяющий права доступа к области, режим блокирования в памяти и т.д. Поле p_type указывает на тип области. Оно может содержать одно из следующих значений:

Значение Описание PT_UNUSED Область не используется PT_TEXT Область содержит сегмент кода PT_DATA Область содержит сегмент данных PT_STACK Область используется в качестве стека процесса PT_SHMEM Область используется в качестве разделяемой памяти PT_LIBTXT Область содержит код библиотек PT_LIBDAT Область содержит данные библиотек PT_SHFIL Область используется для хранения файла, отображенного в память

Наконец, поле p_regva задает виртуальный адрес области в адресном пространстве процесса.

Поля структуры region, приведенные на рис. 3.10, имеют следующие значения. Поле r_pgsz определяет размер области в страницах, из которых r_nvalid страниц присутствуют в оперативной памяти (см. далее раздел "Страничное замещение"). Несколько процессов могут ссылаться на одну и ту же область, поле r_refcnt хранит число таких ссылок. Поле r_pde  адресует таблицу страниц области[33]. Поле r_iptr адресует inode файла, где располагаются данные области (например, для области кода, r_iptr будет указывать на inode исполняемого файла).

Фактическую информацию о структурах управления адресным пространством процесса можно получить с помощью команды crash(1M). В следующем примере таким образом определяется содержимое структур pregion процесса и характеристики соответствующих областей.

# crash

dumpfile = /dev/mem, namelist = /unix, outfile = stdout

> pregion 101

SLOT PREG REG#      REGVA  TYPE FLAGS

 101    0   12   0x700000  text rdonly

        1   22   0x701000  data

        2   23 0x7ffffffc stack

        3  145 0x80001000 lbtxt rdonly

        4  187 0x80031000 lbdat pr

Как можно увидеть из вывода команды crash(1М), с рассматриваемым процессом связаны пять областей: сегмент кода, данных и стека, а также сегменты кода и данных подключенной библиотеки. Столбец REG# определяет запись таблицы областей, где расположена адресуемая каждой pregion область region. Заметим, что значение в столбце REG# лишь отчасти соответствует полю p_reg структуры pregion, поскольку последнее является указателем, а не индексом таблицы. Столбец REGVA содержит значения виртуальных адресов областей.

С помощью полученной информации мы можем более детально рассмотреть любую из областей процесса. Выведем данные о сегментах кода, данных и стека:

>region 12 22 23

SLOT PGSZ VALID SMEM NONE SOFF KEF SWP NSW FORW BACK INOX TYPE FLAGS

  12    1     1    1    0    0  11   0   0   15    5  154 stxt done

  22    3     1    0    0    0   1   0   0  238   23  154 priv done

  23    2     1    1    0    0   1   0   0  135   24      priv stack

Столбец PGSZ определяет размер области в страницах, а столбец VALID — число страниц этой области, находящихся в оперативной памяти. Как можно заметить, для сегментов данных и стека страниц недостаточно, поэтому может возникнуть ситуация, когда процессу потребуется обращение к адресу, в настоящее время отсутствующему в памяти. Заметим также, что столбец INOX содержит индексы таблиц inode, указывающие на метаданные файлов, откуда было загружено содержимое соответствующих сегментов.

Мы можем взглянуть на дополнительные сведения об этом файле:

>inode 154

INODE TABLE SIZE = 472

SLOT MAJ/MIN FS INUMB RCNT LINK UID GID SIZE    MODE MNT M/ST FLAGS

154    1,42   2  1562    3    1 123  56 8972 f---755   0 R130 tx

Из этой таблицы мы можем определить файловую систему, в которой расположен файл (MAJ/MIN), а также номер его дискового inode — INUMB. В данном случае он равен 1562. Выполнив команду ncheck(1), мы узнаем имя исполняемого файла, соответствующего исследуемому процессу:

$ ncheck -i 1562

/de/root:

1562 /home/andrei/CH3/test

Замещение страниц

Ранние версии UNIX работали на компьютерах PDP-11 с 16-разрядной архитектурой и адресным пространством 64 Кбайт. Некоторые модификации позволяли использовать отдельные адресные пространства для кода и данных, накладывая тем не менее существенные ограничения на размер адресного пространства процесса. Это привело к разработке различных схем программных оверлеев (overlay), использовавшихся как для прикладных задач, так и для ядра операционной системы. Суть этих методов заключается в том, что в неиспользуемые участки адресного пространства процесса записываются другие части программы. Например, после запуска системы необходимость в функциях начальной инициализации отпадает и часть памяти, содержащая этот код, может быть использована для хранения других данных или инструкций операционной системы. Не говоря о значительной сложности такого подхода для разработчиков программного обеспечения, использование этих методов приводило к низкой переносимости программ, поскольку они в значительной степени зависели от конкретной организации памяти. Порой даже расширение оперативной памяти требовало внесения модификаций в программное обеспечение.

Механизмы управления памятью сводились к использованию свопинга. Процессы загружались в непрерывные области оперативной памяти целиком, выгружался процесс также целиком. Только небольшое число процессов могло быть одновременно размещено в памяти, и при запуске процесса на выполнение, несколько других процессов необходимо было переместить во вторичную память. Схема управления памятью, основанная на механизме свопинга, показана на рис. 3.11.

Рис. 3.11. Управление памятью, основанное на свопинге

Механизм страничного замещения по требованию был реализован в UNIX в 1978 году на новом компьютере VAX-11/780, имевшем 32-разрядную архитектуру, 4 Гбайт адресуемого пространства и аппаратную поддержку страничного механизма. Первой системой UNIX, в которой управление памятью основывалось на страничном замещении по требованию, явилась версия 3.xBSD. Уже в середине 80-х годов все основные версии UNIX обеспечивали страничное замещение в качестве основного механизма, оставляя свопингу вторую роль.

Как уже говорилось в системах с виртуальной памятью, основанной на страничном механизме, адресное пространство процесса разделено на последовательные участки равной длины, называемыми страницами. Такая же организация присуща и физической памяти, и в конечном итоге любое место физической памяти адресуется номером страницы и смещением в ней. Деление адресного пространства процесса является логическим, причем логическим последовательным страницам виртуальной памяти при поддержке операционной системы и аппаратуры (MMU процессора) ставятся в соответствие определенные физические страницы оперативной памяти. Эта операция получила название трансляции адреса.

Однако механизм трансляции адреса является первым условием реализации виртуальной памяти, позволяя отделить виртуальное адресное пространство процесса от физического адресного пространства процессора. Вторым условием является возможность выполнения процесса, чье адресное пространство не имеет полного отображения на физическую память. Чтобы удовлетворить второму условию, каждая страница виртуальной памяти имеет флаг присутствия в оперативной памяти. Если адресуемая страница отсутствует в памяти, аппаратура генерирует страничную ошибку, которая обрабатывается операционной системой, в конечном итоге приводя к размещению этой страницы в памяти. Таким образом, для выполнения процесса является необходимым присутствие в памяти лишь нескольких страниц процесса, к которым в данный момент происходит обращение (рис. 3.12).

1 ... 51 52 53 54 55 56 57 58 59 ... 130
Перейти на страницу:
На этой странице вы можете бесплатно скачать Операционная система UNIX - Андрей Робачевский торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...