Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Глазами физика. От края радуги к границе времени - Уолтер Левин

Глазами физика. От края радуги к границе времени - Уолтер Левин

Читать онлайн Глазами физика. От края радуги к границе времени - Уолтер Левин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 48 49 50 51 52 53 54 55 56 ... 76
Перейти на страницу:

Природа также создает рентгеновские лучи, нагревая плотную материю до чрезвычайно высоких температур, миллионов градусов по шкале Кельвина. Мы называем это излучением абсолютно черного тела (см. главу 14). Материя нагревается так сильно только в очень экстремальных условиях – например, во время вспышки сверхновых, весьма эффектного смертельного взрыва некоторых массивных звезд, – или когда газ падает на очень высоких скоростях в направлении черной дыры или нейтронной звезды (подробнее об этом я расскажу в главе 13, обещаю!). Солнце, кстати, с его температурой поверхности около 6000 градусов Кельвина, излучает чуть меньше половины своей энергии (46 процентов) в форме видимого света. Львиная доля остальной энергии излучается в форме инфракрасного (49 процентов) и ультрафиолетового (5 процентов) излучения, которое недостаточно горячо, чтобы испускать рентгеновские лучи. Солнце также испускает некоторые рентгеновские лучи; их физика до конца не изучена, но энергия в виде рентгеновского излучения составляет лишь около одной миллионной от общего количества излучаемой им энергии. Кстати, ваше собственное тело – тоже источник инфракрасного излучения (см. главу 9), просто оно недостаточно горячее, чтобы излучать видимый свет.

Одним из самых интересных и полезных свойств рентгеновских лучей является то, что некоторые виды материи, например наши кости, поглощают их сильнее других, скажем мягких тканей. Поэтому-то рентгеновский снимок рта или кисти состоит из светлых и темных зон. Если вы когда-нибудь делали рентген, то знаете, что перед этим на человека надевают специальный фартук для защиты остальных частей тела, поскольку воздействие рентгеновских лучей повышает риск развития онкологических заболеваний. Так что, можно считать, нам очень повезло, что атмосфера нашей планеты столь эффективно поглощает рентгеновские лучи. На уровне моря около 99 процентов низкоэнергетического рентгеновского излучения (1 кэВ) поглощается всего лишь одним сантиметром воздуха. Для поглощения 99 процентов рентгеновских лучей в 5 кэВ потребуется уже около 80 сантиметров воздуха. А для поглощения той же доли рентгеновских лучей высоких энергий – 25 кэВ – необходим слой воздуха почти 80 метров.

Рождение рентгеновской астрономии

Теперь-то вы, конечно, понимаете, почему в 1959 году, когда Бруно Росси пришла в голову идея заняться поисками рентгеновских лучей из космоса, он предложил использовать ракету, которая смогла бы выйти за пределы земной атмосферы. Но тогда даже сама идея поиска рентгеновских лучей казалась дикой. У ученых не было никаких разумных теоретических оснований считать, что есть рентгеновские лучи, поступающие из-за пределов Солнечной системы. Но Росси не был бы Росси, если бы не убедил своего бывшего студента Мартина Энниса из American Science and Engineering (AS&E) и одного из его сотрудников по имени Риккардо Джаккони в том, что эта идея заслуживает внимания.

Джаккони и его коллега Фрэнк Паолини разработали специальный счетчик Гейгера – Мюллера, который обнаруживал рентгеновские лучи и крепился к носовой части ракеты. И они действительно установили три таких прибора на одной ракете. Изобретатели назвали приспособление «крупноразмерным детектором», хотя на самом деле оно было размером с кредитную карту. Затем ребята из AS&E занялись поиском финансирования, чтобы провести эксперимент, но в НАСА их предложение отклонили.

Тогда Джаккони изменил его, включив в качестве объекта исследований Луну, и подал в Кэмбриджскую исследовательскую лабораторию ВВС (AFCRL – Air Force Cambridge Research Laboratories). Им и его единомышленниками выдвигался следующий аргумент: солнечные рентгеновские лучи должны производить так называемое флуоресцентное излучение с поверхности Луны и данное исследование существенно облегчит химический анализ лунной поверхности. Они также ожидали обнаружить тормозное излучение с поверхности Луны, возникающее в результате воздействия электронов, содержащихся в солнечном ветре. А поскольку Луна находится близко к Земле, рентгеновские лучи, скорее всего, действительно можно выявить. Надо сказать, это был очень умный ход, поскольку AS&E уже заручилась поддержкой ВВС в отношении ряда других проектов (некоторые под грифом секретности), и им, скорее всего, было известно, что AFCRL заинтересуют исследования Луны. Как бы там ни было, на этот раз предложение было одобрено.

И вот, после двух неудачных попыток в 1960 и 1961 годах за минуту до полуночи 18 июня 1962 года состоялся очередной запуск, заявленная миссия которого состояла в попытке обнаружить рентгеновское излучение Луны и найти источники такого излучения за пределами Солнечной системы. На высоте 80 километров над Землей, где счетчики Гейгера – Мюллера смогли обнаружить рентгеновские лучи в диапазоне 1,5–6 кэВ без атмосферных помех, эта ракета провела всего шесть минут. Вот так ученые наблюдали за космосом с помощью ракет в те далекие дни. Они отправляли ракету за пределы атмосферы, где та сканировала небо всего пять-шесть минут, после чего возвращалась на Землю.

Поистине удивительно, что исследователи сразу же обнаружили рентгеновское излучение, но исходило оно не от Луны, а откуда-то из-за пределов Солнечной системы.

Рентгеновское излучение из глубокого космоса? Откуда? Никто не понимал, в чем, собственно, суть данного открытия. До этого полета мы знали лишь об одной звезде – источнике рентгеновского излучения – нашем Солнце. А если бы оно находилось в десяти световых годах от Земли (что, кстати, по астрономическим меркам буквально в двух шагах), то оборудование, используемое в том историческом полете, было в миллион раз менее чувствительным, чем требовалось бы для обнаружения его рентгеновских лучей. Это было ясно всем. Так что, где бы ни располагался источник, он должен был излучать по крайней мере в миллион раз больше рентгеновских лучей, чем Солнце, а это возможно только в том случае, если он находится очень близко. Но об астрономических телах, испускающих (по меньшей мере) в миллион или в миллиард раз больше рентгеновских лучей, чем Солнце, в буквальном смысле слова никто никогда не слышал. И никакая физика не могла описать такой объект. Иными словами, это должно было быть какое-то принципиально новое явление на небесах.

Так в ночь с 18 на 19 июня 1962 года родилась целая новая область науки – рентгеновская астрономия.

Астрофизики начали направлять в космос оснащенные детекторами ракеты, чтобы точно выяснить, где находится этот источник и нет ли там каких-либо других источников. Оценка положения небесных тел всегда сопряжена с неопределенностью, потому-то астрономы и говорят о неопределенности координат, воображаемом «окне ошибки», наклеенном на купол неба, стороны которого измеряются в градусах или угловых минутах (минута дуги) либо в секундах. Это окно достаточно велико, и это обеспечивает 90-процентную вероятность того, что объект действительно размещен внутри него. Астрономы просто зациклены на этих «окнах», что вполне объяснимо: чем меньше окно, тем точнее известно положение объекта. Это особенно важно в рентгеновской астрономии: ведь чем меньше окно, тем выше вероятность, что можно найти оптический аналог интересующего источника. Так что окно действительно малого размера считается весьма серьезным достижением.

Профессор Энди Лоуренс из Университета Эдинбурга ведет астрономический блог под названием The e-Astronomer, в котором однажды разместил свои воспоминания о работе над диссертацией на тему обнаружения координат сотен рентгеновских источников. «Однажды ночью мне приснилось, что я окно ошибки и никак не могу найти в себе источник рентгеновского излучения, который просто обязательно должен во мне быть. Знаете, я проснулся в холодном поту». Думаю, вы отлично понимаете, почему!

Размер окна ошибки источника рентгеновского излучения, обнаруженного Риккардо Джаккони, Хербом Гурски, Фрэнком Паолини и Бруно Росси, составлял 10 × 10 градусов, или 100 квадратных градусов. Учтите при этом, что размер Солнца – полградуса. Иными словами, неопределенность оценки местонахождения источника предполагала окно, площадь которого эквивалентна пяти сотням наших Солнц! В это окно входили части созвездий Скорпиона и Наугольника, а по краю оно соприкасалось с созвездием Жертвенник. Ясно, что определить, в каком именно созвездии расположен источник, астрономы тогда не могли.

В апреле 1963 года группа Герберта Фридмана из Военно-морской научно-исследовательской лаборатории в Вашингтоне существенно уточнила местоположение источника. Ученые определили, что он находится в созвездии Скорпион, поэтому его назвали Sco X-1 (от названия Scorpio): х означает рентгеновские лучи, а цифра 1 указывает на то, что это первый источник рентгеновского излучения, обнаруженный в созвездии Скорпион. Кстати, любопытный, хоть и крайне редко упоминающийся факт: Sco X-1 расположен почти в 25 градусах от центра окна ошибки, которое Джаккони и другие ученые указали в отчете, ознаменовавшем рождение рентгеновской астрономии. Когда астрономы обнаружили новые источники в созвездии Лебедь (Cygnus), те получили имена Cygnus X-1 (сокращенно Cyg X-1), Cygnus X-2 (Cyg X-2) и т. д.; первый источник, выявленный в созвездии Геркулес (Hercules), назвали Her X-1; в созвездии Центавр (Centaurus) – Cen X-1. За следующие три года с помощью ракет было найдено с десяток новых источников, но за одним важным исключением, а именно Tau Х-1, расположенным в созвездии Телец (Taurus), никто не имел ни малейшего представления, что они собой представляют или как испускают рентгеновское излучение в таких огромных количествах, что мы смогли обнаружить его на расстоянии в тысячи световых лет.

1 ... 48 49 50 51 52 53 54 55 56 ... 76
Перейти на страницу:
На этой странице вы можете бесплатно скачать Глазами физика. От края радуги к границе времени - Уолтер Левин торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...