Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Физика для всех. Движение. Теплота - Александр Китайгородский

Физика для всех. Движение. Теплота - Александр Китайгородский

Читать онлайн Физика для всех. Движение. Теплота - Александр Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 47 48 49 50 51 52 53 54 55 ... 79
Перейти на страницу:

Если влажный воздух охлаждать, то в конце концов давление водяных паров в нем сравняется с упругостью пара при этой температуре. Пар станет насыщенным и при дальнейшем понижении температуры начнет конденсироваться в воду. Утренняя роса, увлажняющая траву и листья, появляется как раз благодаря такому явлению.

При 20 °C плотность насыщенных паров воды – около 0,00002 г/см3. Мы будем себя хорошо чувствовать, если в воздухе находится водяных паров 60 % от этого числа – значит, лишь немного более одной стотысячной доли грамма в 1 см3.

Хоть эта цифра и мала, но для комнаты она приведет к внушительным количествам воды. Нетрудно подсчитать, что в комнате средних размеров с площадью 12 м2 и высотой 3 м может «уместиться» в виде насыщенного пара около килограмма воды.

Значит, если плотно закрыть такую комнату и поставить открытую бочку с водой, то испарится литр воды, какова бы ни была емкость бочки.

Интересно сравнить этот результат для воды с соответствующими цифрами для ртути. При той же температуре в 20 °C плотность насыщенного пара ртути – 10−8г/см3. В комнате, о которой только что шла речь, уместится не более 1 г ртути.

Кстати говоря, ртутные пары очень ядовиты, и 1 г ртутных паров может серьезно повредить здоровью любого человека. Работая со ртутью, надо следить, чтобы даже самая маленькая капелька ртути не пролилась.

Критическая температура

Как превратить газ в жидкость? График кипения отвечает на этот вопрос. Превратить газ в жидкость можно, либо уменьшая температуру, либо увеличивая давление.

В XIX веке повышение давления представлялось задачей более легкой, чем понижение температуры. В начале этого столетия великому английскому физику Михаилу Фарадею удалось сжать газы до значений упругости паров и таким способом превратить в жидкость много газов (хлор, углекислый газ и др.).

Однако некоторые газы – водород, азот, кислород – никак не поддавались сжижению. Сколько ни увеличивали давление, они не превращались в жидкость. Можно было подумать, что кислород и другие газы не могут быть жидкими. Их причислили к истинным, или постоянным, газам.

На самом же деле неудачи были вызваны непониманием одного важного обстоятельства.

Рассмотрим жидкость и пар, находящиеся в равновесии, и подумаем, что происходит с ними при возрастании температуры кипения и, разумеется, соответствующем возрастании давления. Иначе говоря, представим себе, что точка на графике кипения движется вдоль кривой вверх. Ясно, что жидкость при повышении температуры расширяется и плотность ее падает. Что же касается пара, то увеличение температуры кипения, разумеется, способствует его расширению, но, как мы уже говорили, давление насыщенного пара растет значительно быстрее, чем температура кипения. Поэтому плотность пара не падает, а, наоборот, быстро растет с увеличением температуры кипения.

Поскольку плотность жидкости падает, а плотность пара растет, то, двигаясь «вверх» по кривой кипения, мы неминуемо доберемся до такой точки, в которой плотности жидкости и пара сравняются (рис. 99).

В этой замечательной точке, которая называется критической, кривая кипения обрывается. Так как все различия между газом и жидкостью связаны с разницей в плотности, то в критической точке свойства жидкости и газа становятся одинаковыми. Для каждого вещества существует своя критическая температура и свое критическое давление. Так, для воды критическая точка соответствует температуре 374 °C и давлению 218,5 атм.

Если сжимать газ, температура которого ниже критической, то процесс его сжатия изобразится стрелкой, пересекающей кривую кипения (рис. 100). Это значит, что в момент достижения давления, равного упругости пара (точка пересечения стрелки с кривой кипения), газ начнет конденсироваться в жидкость. Если бы наш сосуд был прозрачным, то в этот момент мы увидели бы начало образования слоя жидкости на дне сосуда. При неизменном давлении слой жидкости будет расти, пока, наконец, весь газ не превратится в жидкость. Дальнейшее сжатие потребует уже увеличения давления.

Совершенно иначе обстоит дело при сжатии газа, температура которого выше критической. Процесс сжатия опять-таки можно изобразить в виде стрелки, идущей снизу вверх. Но теперь эта стрелка не пересекает кривую кипения. Значит, при сжатии пар не будет конденсироваться, а будет лишь непрерывно уплотняться.

При температуре выше критической невозможно существование жидкости и газа, поделенных границей раздела. При сжатии до любых плотностей под поршнем будет находиться однородное вещество, и трудно сказать, когда его можно назвать газом, а когда – жидкостью.

Наличие критической точки показывает, что между жидким и газообразным состоянием нет принципиального различия. На первый взгляд могло бы показаться, что такого принципиального различия нет только в том случае, когда речь идет о температурах выше критической. Это, однако, не так. Существование критической точки указывает на возможность превращения жидкости – самой настоящей жидкости, которую можно налить в стакан – в газообразное состояние без всякого подобия кипения.

Такой путь превращения показан на рис. 100. Крестиком отмечена заведомая жидкость. Если немного понизить давление (стрелка вниз), она закипит, закипит она и в том случае, если немного повысить температуру (стрелка вправо). Но мы поступим совсем иначе. Сожмем жидкость весьма сильно, до давления выше критического. Точка, изображающая состояние жидкости, пойдет вертикально вверх. Затем подогреем жидкость – этот процесс изобразится горизонтальной линией. Теперь, после того как мы очутились правее критической температуры, понизим давление до исходного. Если теперь уменьшить температуру, то можно получить самый настоящий пар, который мог быть получен из этой жидкости более простым и коротким путем.

Таким образом, всегда возможно, изменяя давление и температуру в обход критической точки, получить пар путем непрерывного перехода его из жидкости или жидкость из пара. Такой непрерывный переход не требует кипения или конденсации.

Ранние попытки сжижения таких газов, как кислород, азот, водород, потому и были неудачны, что не было известно о существовании критической температуры. У этих газов критические температуры очень низкие: у азота −147 °C, у кислорода −119 °C, у водорода −240 °C, или 33 K. Рекордсменом является гелий, его критическая температура равна 4,3 K. Превратить эти газы в жидкость можно лишь одним способом – надо снизить их температуру ниже указанной.

Получение низких температур

Существенного уменьшения температуры можно достигнуть разными способами. Но идея всех способов одна и та же: надо заставить тело, которое мы хотим охладить, затратить свою внутреннюю энергию.

Как же это сделать? Один из способов – заставить жидкость кипеть, не подводя тепла извне. Для этого, как мы знаем, надо уменьшить давление – свести его к значению упругости пара. Тепло, расходуемое на кипение, будет заимствовано из жидкости и температура жидкости и пара, а вместе с ней и упругость пара, будут падать. Поэтому, чтобы кипение не прекращалось и происходило побыстрее, из сосуда с жидкостью надо непрерывно откачивать воздух.

Однако падению температуры при этом процессе наступает предел: упругость пара становится в конце концов совершенно незначительной, и нужное давление не смогут создать даже самые сильные откачивающие насосы.

Для того чтобы продолжить понижение температуры, можно, охлаждая газ полученной жидкостью, превратить и его в жидкость с более низкой температурой кипения. Теперь процесс откачки можно повторить со вторым веществом и таким образом получить более низкие температуры. В случае необходимости такой «каскадный» метод получения низких температур можно продлить.

Именно таким образом и поступали в конце прошлого века; сжижение газов производили ступенями: последовательно превращали в жидкость этилен, кислород, азот, водород – вещества с температурами кипения −103°, −183°, −196° и −253 °C. Располагая жидким водородом, можно получить и самую низкокипящую жидкость – гелий (−269 °C). Сосед «слева» помогал получить соседа «справа».

Каскадному методу охлаждения без малого сто лет. В 1877 г. этим методом был получен жидкий воздух. В 1884–1885 гг. впервые был получен жидкий водород.

Наконец, еще через двадцать лет была взята последняя крепость: в 1908 г. Каммерлинг-Оннесом в городе Лейдене в Голландии был превращен в жидкость гелий – вещество с самой низкой критической температурой. Недавно был отмечен 50-летний юбилей этого важного научного достижения.

Долгие годы Лейденская лаборатория была единственной «низкотемпературной» лабораторией. Теперь же во всех странах существуют десятки таких лабораторий, не говоря уже о заводах, производящих жидкий воздух для технических целей.

1 ... 47 48 49 50 51 52 53 54 55 ... 79
Перейти на страницу:
На этой странице вы можете бесплатно скачать Физика для всех. Движение. Теплота - Александр Китайгородский торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...