Интерстеллар: наука за кадром - Кип Торн
Шрифт:
Интервал:
Закладка:
Я не знаю хороших книг или статей о путешествии во времени для случая, если наша Вселенная — это брана в многомерном балке. Однако, как я писал в главе 30, законы Эйнштейна, расширенные в высшие измерения, дают практически те же прогнозы, что и без балка. Подробности о том, как Купер посылает сообщения в прошлое Мёрф, см. в приложении «Некоторые технические примечания».
Глава 31. Эвакуация колоний с Земли
Относительно способа, которым Мёрф эвакуирует колонии с Земли (уменьшение G) в Кип-версий, см. мои комментарии к главе 25 выше в этом разделе.
В начале шестидесятых, когда я учился на доктора наук в Принстонском университете, один из наших профессоров-физиков, Джерард К. О’Нил, исследовал перспективы создания космических колоний в духе той, что мы видим в конце «Интерстеллар». Эти исследования, дополненные исследованиями О’Нила в NASA, вылились в замечательную книгу The High Frontier: Human Colonies in Space [O'Neill 1978], которую я вам горячо рекомендую. Обратите внимание на предисловие Фримана Дайсона, где он рассказывает, почему мечта О’Нила о космических колониях потерпела крах при его жизни, однако может воплотиться в отдаленном будущем.
НЕКОТОРЫЕ ТЕХНИЧЕСКИЕ ПРИМЕЧАНИЯ
Законы физики, которые управляют нашей Вселенной, записываются языком математики. Для тех, кто в ладах с математикой, я дам несколько относящихся к законам физики формул и покажу, как я их использовал, чтобы получить некоторые значения для этой книги. В моих формулах часто фигурируют два числа — это скорость света с = 3,00∙108 м/с и ньютоновская гравитационная постоянная G = 6,67∙1011 м3/(кг∙с2). Я использую экспоненциальное представление чисел, так что 108 означает 1 с восемью нулями — 100000000, или сто миллионов, а 10-11 означает 0,00000000001. Я не стремлюсь к точности более одного процента, поэтому указываю в числах только два или три знака после запятой либо всего один, если число малоизвестно.
Глава 4. Искривления пространства и времени, приливная гравитация
Простейшее количественное представление эйнштейновского закона искривления времени: положите рядом две пары одинаковых часов, чтобы они находились в покое друг относительно друга и находились на разных расстояниях от действующего на них гравитационного притяжения. Пусть R — это дробная разница скорости хода часов, D — расстояние между ними, a g — действующее на них гравитационное ускорение (направленное от часов, которые идут быстрее, к часам, которые идут медленнее). Тогда закон Эйнштейна утверждает, что g = Rc2/D. В случае эксперимента Паунда — Ребки в гарвардской башне R равнялось 210 пикосекундам в день: 2,43∙10-15, а высота башни D равнялась 73 футам (22,3 метра). Подставляя эти значения в формулу для закона искривления времени, получим g = 9,8 м/с2, что действительно равняется гравитационному ускорению (ускорению свободного падения) на Земле.
Глава 6. Анатомия Гаргантюа
Для черной дыры, которая, как Гаргантюа, вращается очень быстро, окружность горизонта С в экваториальной плоскости выражается формулой С = 2πGM/c2 = 9,ЗМ/M☼ км. Здесь М — это масса дыры, а М☼ = 1,99∙1030 — это солнечная масса. У очень медленно вращающейся дыры окружность горизонта вдвое больше. Радиус горизонта равен его окружности, деленной на 2π: R = GM/c2= 1,48∙108 в случае Гаргантюа, что практически равно радиусу орбиты Земли вокруг Солнца.
Массу Гаргантюа я выбрал исходя из следующих рассуждений: масса планеты Миллер m вызывает направленное внутрь гравитационное ускорение g на поверхности планеты в соответствии с ньютоновским законом обратных квадратов g = Gm/r2, где г — это радиус планеты. На стороне планеты, которая обращена к Гаргантюа, и на стороне, которая противостоит дыре, приливная гравитация Гаргантюа вызывает растягивающее ускорение gt (разница силы притяжения Гаргантюа между поверхностью планеты и ее центром, на расстоянии r), gt = (2GM/R)r3. Здесь R — это радиус орбиты планеты Миллер вокруг Гаргантюа, который практически соответствует радиусу горизонта черной дыры. Если приливное ускорение превысит собственное гравитационное ускорение планеты, ее разорвет на части, поэтому gt должно быть меньше g: gt < g. Подставляя формулы для g, gt и R, выразив массу планеты через ее плотность ρ как m = (4π/3)r3ρ и произведя некоторые вычисления, получим: М = √(3c3)/√(2πG3ρ). Я оцениваю плотность планеты Миллер как ρ = 10000 кг/м3 (что приблизительно соответствует плотности сжатых горных пород), откуда получаю выражение для массы Гаргантюа: М < 3,4∙1038 кг — это примерно 200 миллионов солнечных масс, что я, в свою очередь, аппроксимирую до 100 миллионов солнечных масс. Используя уравнения теории относительности, я получил формулу, которая связывает замедление времени на планете Миллер, S = (один час за семь лет) = 1,63∙10-5, с долей а, на которую скорость вращения Гаргантюа меньше максимально возможной: α = 16S3/(3√3). Эта формула верна только для очень высоких скоростей вращения. Подставляя значение S, получим α = 1,3∙10-14, то есть скорость вращения Гаргантюа меньше предельной приблизительно на одну стотриллионную долю.
Глава 8. Внешний вид Гаргантюа
Уравнения для орбитального движения лучей света вокруг Гаргантюа, которые я предоставил Оливеру Джеймсу из Double Negative, — вариант уравнений из приложения А в [Levin, Perez-Giz 2008]. Уравнения для изменения сечения пучков света — вариант уравнений из [Pineult, Roeder 1977a] и [Pineult, Roder 1977b]. В нескольких статьях, которые будут выложены по адресу arxiv.org/find/ gr-qc, мы с командой Пола Франклина дадим конкретные формы наших уравнений и расскажем о подробностях их реализации и полученных в ходе моделирования результатах.
Глава 12. Задыхаясь без кислорода
Вот расчеты, лежащие в основе заявлений, которые я делаю в главе 13. Это неплохой пример того, как ученый производит оценки. Цифры здесь весьма приблизительны; я указываю их точность лишь до одного знака после запятой.
Масса земной атмосферы 5∙1018 кг, из которых около 80 процентов — это азот, а 20 процентов — молекулярный кислород, 02; тогда выходит, что в атмосфере 1018 кг O2. Количество углерода в неперегнивших растениях (геофизики называют его «органическим углеродом») составляет около 3∙1015 кг — приблизительно половина находится в поверхностных слоях мирового океана, и половина — на суше (таблица 1 из [Hedges, Keil 1995]). Обе эти части окисляются (преобразуются в СO2) в течение примерно 30 лет. Поскольку молекула СO2 состоит из двух атомов кислорода (полученного из атмосферы) и лишь одного атома углерода, а масса атома кислорода составляет 16/12 от массы атома углерода, после того как все растения на Земле погибнут, на окисление органического углерода будет затрачено 2 х 16/12 х (3∙1015 кг) = 1016 кг O2 — один процент всего атмосферного кислорода.
Относительно подтверждений внезапного перемешивания океанов и теории, объясняющей причины этого явления, см. [Adkins, Ingersoll, Pasquero 2005]. Стандартная оценка количества органического углерода в океанских придонных отложениях, которые могут оказаться на поверхности в результате перемешивания океанов, принимает во внимание главным образом верхний слой отложений, содержимое которого, в свою очередь, перемешивается за счет океанских течений и активности живых существ. Углерод в этом слое скапливается по мере его осаждения с оценочной скоростью около 1011 кг в год, а среднее время, которое требуется, чтобы этот углерод соединился с кислородом из океанской воды, составляет 1000 лет. Всего получается около 1,5∙1014 кг — одна двадцатая от общего количества углерода на суше и в поверхностных слоях океана [Emerson, Hedges 1988, Hedges, Keil 1995]. Однако: 1) оценочная величина скорости осаждения может намного отличаться от действительной скорости осаждения; например Энн Баумгарт и другие [Baumgart et al. 2009], руководствуясь тщательными измерениями, оценили скорость осаждения углерода в Индийском океане около Явы и Суматры с фактором неопределенности, равным 50. При экстраполяции на весь Мировой океан это может дать до 3∙1015 кг в верхнем слое отложений (столько же, сколько на суше и в поверхностных слоях океана); 2) изрядная часть осажденного углерода может попасть в нижний слой отложений, который не смешивается с водой и потому не окисляется, за исключением внезапных перемешиваний океана. Считается, что последний раз такое перемешивание происходило во время последнего ледникового периода, около 20000 лет назад — этот срок в двадцать раз превышает время окисления углерода в верхнем слое отложений. Так что в нижнем слое может быть в двадцать раз больше органического углерода, чем в верхнем, а значит, и в двадцать раз больше, чем на суше и на поверхности океана. Если новое перемешивание океана выбросит этот углерод на поверхность, где он окислится, этого будет достаточно, чтобы вынудить всех людей на планете задыхаться от нехватки кислорода и умирать от отравления СO2; см. конец главы 12. Поэтому такой сценарий возможен, хоть и крайне маловероятен.