Категории
Самые читаемые книги

Коллайдер - Пол Хэлперн

Читать онлайн Коллайдер - Пол Хэлперн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 46 47 48 49 50 51 52 53 54 ... 57
Перейти на страницу:

Впрочем, ни для кого не секрет, что в военное время отдельным ученым поручались гораздо более рискованные эксперименты. Желание противостоять тем ужасам, которые приносит с собой война, полностью меняет дело. Участники «Манхэттенского проекта», например, осознавали, насколько мощное и разрушительное оружие они создают и готовятся испытать. Никто не брался говорить наверняка, чего ждать от «Тринити», первой атомной бомбы (на плутонии), разорвавшейся в местечке с подходящим названием Хорнада-дель-Муэрто («Дорога мертвых»), штат Нью-Мексико. Ограничится ли взрыв пределами пустынного плато или, выйдя из-под контроля, распространится, возможно, на весь мир и вызовет неисчислимые жертвы?

Накануне ядерных испытаний Ферми всем, кого не смущал его черный юмор, предлагал держать пари: запустится ли цепная реакция, которая испарит атмосферу, или нет. Участники должны были выбрать, исчезнет ли вся Земля или только Нью-Мексико. Сейчас, конечно, волосы дыбом встают, когда подумаешь, что люди пошли на эксперимент, который мог оказаться роковым для планеты в целом. Не говоря уже об апокалипсических шутках физиков, оставляющих весьма смешанные чувства.

Сегодня мы знаем, что первая бомба осветила небо, как «тысячи солнц» (сравнение принадлежит Оппенгеймеру, который, в свою очередь, позаимствовал его из Бхагавад-гиты, священной книги индуизма). Но мир она, конечно, не уничтожила. От взрыва осталась воронка глубиной около 3 м и диаметром свыше 700 м, а его мощность составила примерно 20 килотонн, то есть 20 000 тонн в тротиловом эквиваленте.

Взрывы практически никогда не измеряются в ТэВах, просто потому, что эта единица соответствует несравнимо меньшему количеству энергии. Ничто нам, однако, не мешает перевести одни единицы в другие. В таком случае в атомном взрыве «Тринити» выделилось 5х1020 ТэВ. Это пятерка с двадцатью нулями - по-истине астрономическое число, равное, например, числу звезд в миллиарде галактик среднего размера. Получается, даже самая несовершенная атомная бомба производит гораздо больше энергии, чем любое из вышеописанных столкновений на ускорителе.

Буквально через несколько недель после первых ядерных испытаний в атомных взрывах погибли японские города Хиросима и Нагасаки, а вместе с ними ушла в прошлое и Вторая мировая война. С наступлением атомного века человечество лишилось покоя. А что, если ошибка в вычислениях, многократно усиленная опрометчивыми политическими решениями, приведет к концу света? Масла в огонь подливали и такие блестящие ученые, как Эдвард Теллер и Герман Кан, спокойно обсуждая, какие из новых типов ядерного оружия дают больше жертв.

Отдушиной в этой насыщенной паническим страхом атмосфере стали фильмы ужасов. Воображаемую угрозу вторжения пришельцев оказалось морально легче воспринять, чем реальную опасность, исходившую от нас самих. Первых, судя по фильмам, можно было, сплотившись, одолеть, а со второй было даже неизвестно, как бороться. Живой пример - картина 1958 г. «Капля» про разбухающую тварь, прибывшую из космоса. По незатейливому сюжету вместе с упавшим метеоритом на Землю попадает желеобразный организм с непомерным аппетитом. Поглощая очередной «обед», капля каждый раз увеличивается в размерах. Вскоре она достигает необъятной величины и рыщет по местному кинотеатру и кафе в поисках закуски из человечины. Люди в панике разбегаются от незваного прожорливого гостя, но в один прекрасный момент приходит герой (в исполнении Стива Маккуина) и замораживает пришельца огнетушителем.

Если устроить опрос на тему, какие астрономические объекты смогли бы сыграть роль капли, первую строчку, несомненно, заняли бы черные дыры, компактные остатки массивных звезд. Представьте, вот такое небесное тело незаметно проникает в кинозал, засасывает всех зрителей, толстеет и идет искать себе добычу дальше. Впрочем, есть в этом стереотипе зерно истины. Если черная дыра находится, например, в двойной системе, она может своим гравитационным полем оттягивать вещество со своей еще светящейся соседки и со временем набирать массу. В этом процессе нет ничего загадочного или необычного. Разве что черная дыра образует потенциальную яму с более крутыми склонами. В астрономических наблюдениях это перетекание замечают по излучению, которое испускается веществом, падающим на черную дыру.

Физика черных дыр покоится на эйнштейновской общей теории относительности. В 1915 г., едва Эйнштейн успел поставить точку в своей теории гравитации, немецкий физик Карл Шварцшильд, служивший тогда на русском фронте Первой мировой войны, выписал одно из точных решений. Он разрешил уравнения Эйнштейна для статического однородного шара без вращения и определил пространственную геометрию вокруг него. Так называемое решение Шварцшильда описывает поле тяжести простейших, сферически симметричных небесных тел. Оно дает точную картину того, как шар из некоторого вещества, скажем, звезда или планета, прогибает пространство-время и вынуждает пролетающие тела следовать по искривленным траекториям. Улетит тело, останется на орбите или упадет, зависит от его скорости: больше она второй космической, необходимой, чтобы вырваться из гравитационных тисков, или меньше. Если у тела не хватает скорости, как, например, у истощившей весь запас топлива ракеты, ему суждено рухнуть.

У решения Шварцшильда есть одна любопытная черта, которая сначала считалась математическим казусом, но потом привлекла к себе внимание астрономического сообщества. Дело в том, что у достаточно плотных тел появляется воображаемая сферическая граница - горизонт событий - с удивительным свойством: если нечто под нее попало, оно уже не сможет выйти обратно, даже свет. Оказывается, на горизонте событий вторая космическая скорость сравнивается со скоростью света. Поэтому никакое тело не может ее достигнуть и улететь. Такие неизменно темные сверх-компактные объекты Джон Уилер в 60-х гг. окрестил черными дырами. Они представляют собой проколы в ткани пространства-времени, являя собой астрономические «преисподние».

Наличие недоступных областей пространства заставляет задуматься о том, каковы законы физики в этих укрытиях. Соблюдаются ли под горизонтом событий те же физические принципы, что и снаружи? Как об этом узнать, если никому не дано заглянуть внутрь, а потом, вернувшись, рассказать об увиденном? Уилера особенно волновало, что происходит с неупорядоченной материей, когда она достигает той точки, откуда нет пути назад? Согласно давно известному второму закону термодинамики энтропия замкнутой системы в естественных условиях либо сохраняется, либо возрастает. Энтропия - это мера беспорядка или количества отработанного материала в системе. Таким образом, в естественных условиях упорядоченная энергия неизменно превращается в отработанный материал (например, пожар делает из аккуратных насаждений груду пепла), но нет способа полностью превратить все отходы снова в топливо. Никто, правда, не сказал, что второй закон термодинамики можно применять к Вселенной в целом. Тем не менее Уилер не находил себе места: как это так, мы выкидываем мусор в черную дыру, он там бесследно исчезает, а доля упорядоченной энергии во Вселенной при этом возрастает! Может быть, черные дыры - это пластические хирурги космологии, умеющие искусно скрыть возрастные изменения и провести Вселенной омоложение?

В 1972 г. ученик Уилера Якоб Бекеннггейн предложил элегантное решение проблемы энтропии черной дыры. По представлениям Бекенштейна, развитым впоследствии Стивеном Хокингом, любая энтропия, привнесенная упавшим в черную дыру веществом, отзывается увеличением площади горизонта. То есть когда энтропия немного возрастает, горизонт событий черной дыры становится чуть-чуть шире. Набухание черных дыр, следовательно, относится к тем самым возрастным изменениям.

Как продемонстрировал Хокинг, из теории Бекенштейна следует потрясающий вывод о конечной судьбе черных дыр. Хотя из-под горизонта ничто не может выйти не будучи разрушенным,

Хокинг высказал гипотезу, что черные дыры теряют свою массу за счет излучения. Удивлению астрофизиков не было предела. Но так называемое хокинговское излучение является следствием одного из умозаключений Бекенштейна. Он не только определил, что такое энтропия черных дыр, но и показал, что у них есть температура. А поскольку все в природе, нагретое до некоторой температуры, - от лавы до звезд, светится (в видимых или невидимых лучах), Хокинг отсюда заключил, что и черные дыры должны излучать. Чтобы частицы могли обойти препятствие, которое представляет собой горизонт событий, приходится предположить, что они совершают квантовое туннелирование. Примерно так же, как альфа-частицы сбегают из ядра в обход ядерных сил. Частицы будут целую вечность вытекать едва сочащимися струйками, слишком слабыми, чтоб нам их наблюдать. Чем тяжелее черная дыра, тем ниже ее температура и тем дольше она испаряется. Скажем, прежде чем полностью «выкипит» черная дыра, образовавшаяся в результате коллапса звезды с массой в десять раз больше, чем у Солнца, пройдет 1070 (единица с семьюдесятью нулями) лет. Здесь даже сравнивать с возрастом Вселенной бесполезно. Столь большое время жизни пока не позволяет зарегистрировать хокинговское излучение в прямых наблюдениях.

1 ... 46 47 48 49 50 51 52 53 54 ... 57
Перейти на страницу:
На этой странице вы можете бесплатно скачать Коллайдер - Пол Хэлперн торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...