Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Нейтрино - призрачная частица атома - Айзек Азимов

Нейтрино - призрачная частица атома - Айзек Азимов

Читать онлайн Нейтрино - призрачная частица атома - Айзек Азимов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 33
Перейти на страницу:

Энергия превращается не только в работу, но и в другие формы энергии. Электрический ток вызывает магнетизм, в лампе накаливания — свет и тепло, в двигателе — кинетическую энергию. Химическая энергия, дающая возможность дереву сгореть, превращается во время этого процесса в тепло и свет, а химический взрыв заставляет предметы лететь и таким образом переходит в кинетическую энергию. Кинетическая энергия благодаря трению превращается в тепло, а если трение используют для зажигания спички, тепло преобразуется в свет. Когда заряжается аккумуляторная батарея, электрическая энергия переходит в химическую; когда она разряжается, происходит обратный процесс.

В этом отношении тепло занимает особое место. Любая другая форма энергии при определенных условиях полностью преобразуется в тепловую. Однако тепло не может превратиться в любую другую форму энергии полностью. Часть энергии всегда остается в виде тепла. Более того, если одна форма нетепловой энергии переходит в другую, это превращение никогда не происходит полностью: некоторая часть энергии всегда переходит в тепло. Следовательно, энергию удобно подразделять на тепловую и все другие формы, включая работу. Поэтому неудивительно, что тепло требует специального рассмотрения и имеет даже собственную единицу измерения. (Не надо забывать, что тепло было тщательно изучено еще до того, как его отнесли к формам энергии.) Единица тепла — калория. Это количество тепла, необходимое для того чтобы поднять температуру одного грамма воды от 14,5 °C до 15,5 °C.

Более распространенная единица энергии, которая чаще всего используется для других ее форм, составлена из грамма, сантиметра и секунды. Если выразить энергию как 1/2 mv2, то единица энергии будет иметь размерность г·см2/сек2. Для большего удобства физики договорились назвать эту единицу односложно, для чего было придумано слово эрг (от слова «энергия»). Эрг — малая единица энергии. Чтобы поднять 1 грамм вещества на короткое расстояние в 1 сантиметр, преодолевая земное притяжение, надо затратить 980,7 эрг.

Теперь можно задать один важный вопрос. Когда определенное количество какой-нибудь нетепловой энергии полностью превращается в тепловую, всегда ли выделяется одно и то же количество тепла? Всегда ли х эрг превращается в у калорий, т. е. сохраняется ли, другими словами, энергия?

Необходимые эксперименты провел в сороковых годах XIX века английский физик Джеймс Джоуль. Он пытался превратить энергию в тепло самыми разными способами, например: заставлял двигаться воду или ртуть с помощью колеса с лопастями, сжимал воздух, пропускал воду через узкие трубки, вращал проволочную катушку между полюсами магнита, пропускал через проволоку электрический ток. В каждом случае он измерял потраченную энергию и выделенное тепло. Даже во время своего медового месяца Джоуль не смог побороть искушения измерить температуру вверху и внизу водопада, чтобы узнать, сколько тепла выделяет энергия падающей воды. К 1847 году он установил, что данное количество нетепловой энергии любого вида всегда производит одинаковое количество тепла.

Впоследствии это было подтверждено несчетное число раз, и теперь мы можем сказать, что 41 800 000 эрг эквиваленты 1 кал тепла. Это соотношение называется механическим эквивалентом тепла. В честь Джоуля 10 000 000 эрг принято считать равными 1 джоулю. Следовательно, механический эквивалент тепла 1 калория равен 4,18 джоуля.

В то же самое десятилетие два немецких физика Юлиус Роберт Майер и Герман Людвиг фон Гельмгольц независимо друг от друга привели ряд аргументов в пользу сохранения энергии. Подкрепленные опытами Джоуля, эти аргументы стали в конце концов убедительными. Так был установлен закон сохранения энергии, который является, вероятно, самым фундаментальным и важным обобщением из всех, которые дала наука.

Подобно массе и в отличие от импульса энергия — скалярная величина. Она бывает больше или меньше, но нет положительной или отрицательной энергии.

Предположим, например, что два пушечных ядра одинаковой массы летят навстречу друг другу с одинаковой скоростью. Их импульсы равны и противоположны, так что общий импульс двух ядер равен нулю. Если ядра столкнутся неупруго, они сплющатся и упадут на землю. Но оба ядра обладали кинетической энергией, а она не может исчезнуть. Однако однажды столкнувшись, ядра больше не движутся. Что же случилось с кинетической энергией? Она превратилась в другую форму энергии — тепловую. В результате столкновения ядра так нагреваются, что могут частично расплавиться. Следовательно, правильнее говорить о полной энергии, а не о суммарной и закон сохранения энергии формулировать так: полная энергия замкнутой системы постоянна.

Закон всемирного тяготения

Я опять хочу подчеркнуть, что законы сохранения, которые были описаны, в действительности не «законы», а просто обобщения. Производя разнообразные измерения, ученые убеждались каждый раз, что импульс, момент количества движения, масса и энергия системы, которая кажется замкнутой, остаются постоянными при любых изменениях в системе. Тогда они сделали широкое обобщение, что данные этих измерений всегда остаются постоянными при всех условиях. Но слова «всегда» и «при всех условиях» — предательские слова. Знаем ли мы на самом деле, что происходит «всегда» и «при всех условиях»? Но даже если упорно продолжать верить в справедливость этого обобщения на Земле, будет ли верно оно для внеземных условий? Наши измерения «сохраняющихся» величин сделаны на Земле, в земных условиях. Не очень хорошо переходить от измерений к предположению о том, что происходит «всегда» и «при всех условиях на Земле. И совсем плохо предполагать, что слова всегда» и «везде» справедливы для всей Вселенной, условия в которой могут невероятно отличаться от земных.

Будет ли сохраняться энергия в условиях вакуума космического пространства? Сохраняется ли энергия при сверхвысоких температурах внутри звезд, температурах, которые нельзя воспроизвести в лаборатории?

В древности философы считали само собой разумеющимся, что «законы природы» не одни и те же во Вселенной: одни — для Земли, другие — для неба. Казалось, что для этого были все основания. На Земле тела падают вниз, а небесные тела движутся по неизменным орбитам и никогда не падают. На Земле тела меняются, разлагаются, умирают, а в небе нельзя заметить каких-либо изменений; Солнце такое же светлое и яркое, как и вчера и вообще на всей памяти человечества.

Однако в наше время собраны факты, которые подчеркивают единство законов природы. Первый сокрушительный удар был нанесен в 1687 году Ньютоном, опубликовавшим книгу о трех законах движения. Основываясь на них, он доказал, что падать яблоко с ветки на землю заставляет та же сила, которая удерживает Луну на орбите вокруг Земли. Падающие на Землю предметы и вращающиеся в небе тела подчиняются одному и тому же основному закону взаимного притяжения, или, выражаясь точнее, закону всемирного тяготения. Акцент в этой фразе надо сделать на слове «всемирное».

Но является ли этот закон действительно всемирным? во времена Ньютона и более столетия после него действие гравитации изучали на примере планет и спутников, так что «закон», несмотря на предполагаемую универсальность, в действительности был ограничен Солнечной системой. В девяностых годах XVIII века английский астроном Вильям Гершель открыл «двойные звезды», которые при внимательном наблюдении оказались близкими соседями, вращающимися один вокруг другого. Дальнейшее тщательное изучение показало, что эти звезды, отстоящие друг от друга на сотни триллионов километров, вращаются по своим орбитам точно в соответствии с законом всемирного тяготения Ньютона.

Но даже за самыми удаленными двойными звездами имеются огромные космические пространства, недосягаемые для самых современных приборов.

Правильно ли тогда утверждать, что закон всемирного (предположительно) тяготения справедлив во всей Вселенной, известной и неизвестной? Нет, конечно.

С другой стороны, факты, свидетельствующие в пользу единства «закона природы», производят впечатление. Позиция физиков примерно такова: то, что мы считаем «законами природы», нельзя применять одинаково во всей Вселенной во все времена, но пока не получено надежное доказательство обратного, мы будем их применять.

Эта позиция основана не только на одном факте кажущейся универсальности гравитации. Более веские доказательства, подтверждающие универсальность основных научных обобщений, исходят из того, что свет от самых далеких звезд очень похож на свет газового пламени с расстояния одного метра.

1 2 3 4 5 6 7 8 9 10 ... 33
Перейти на страницу:
На этой странице вы можете бесплатно скачать Нейтрино - призрачная частица атома - Айзек Азимов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...