Категории
Самые читаемые книги
ЧитаемОнлайн » Документальные книги » Публицистика » Метеорологические и геофизические исследования - Г. Алексеев

Метеорологические и геофизические исследования - Г. Алексеев

Читать онлайн Метеорологические и геофизические исследования - Г. Алексеев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 22
Перейти на страницу:

Исследования в Арктике выявили ряд особенностей в распределении концентрации СО2 над морскими льдами (Semiletov et al., 2004; Голубев и др. 2006). Сезонные колебания концентрации СО2 в атмосфере по данным глобальной сети мониторинга показывают зависимость амплитуд годового хода от широты с явной тенденцией к их возрастанию в направлении высоких широт Северного полушария (рис. 12). Это арктическое усиление амплитуды годовых колебаний концентрации СО2 над Северным Ледовитым океаном было связано (Алексеев, Нагурный, 2005; 2007;. Алексеев и др., 2007а) с активным с влиянием морского льда на формирование сезонного цикла концентрации СО2 в атмосфере над морским льдом. Было показано, что амплитуда растет в основном за счет роста зимней концентрации СО2, который согласуется с ростом амплитуды сезонных колебаний ПМЛ за счет увеличения летнего сокращения. Было выдвинуто предположение, что образование, нарастание и изменение структуры льда в зимний сезон на все большей акватории должно сопровождаться увеличением выделения СО2 в атмосферу и в подледный слой воды. Летом СО2 из атмосферы над Арктическим бассейном должен поглощаться опресненной водой на поверхности льда, в разводьях, трещинах и каналах, а также расходоваться на фотосинтез в верхнем слое воды и во льду (Semiletov et al., 2004; Rysgaard et al., 2007).

Рис. 12. Размах годового колебания среднемесячной концентрации СО2 (точки) на береговых и островных станциях, расположенных на разных широтах в океанических областях Северного и Южного полушарий. Использованы среднемесячные значения концентрации за 2004 год по данным ВМО (WMO, 2006)

Исследования, выполненные на дрейфующей станции СП-35 в 2007/08 годах позволили обнаружить и измерить эмиссию СО2 в атмосферу с поверхности нарастающего льда и оценить ее годовой поток величиной 31010 моль/год с поверхности СЛО (Недашковский, Макштас, 2010). Плотность потока эмиссии СО2 составляет согласно этой работе 20±4 ммоль/м2. Эти результаты подтвердили выводы (Алексеев, Нагурный, 2005; 2007;. Алексеев и др., 2007а) о зимнем повышении концентрации СО2 в приледном слое атмосферы над СЛО.

Арктический бассейн

Для формирования климата морской Арктики важным процессом является поступление теплой и соленой воды из Северной Атлантики. Приток атлантической воды (АВ) в Арктику составляет часть глобального океанического конвейера, связывающего океаны транспортом тепла, соли и пресной воды. Поступая из Северной Атлантики, АВ распространяются по акватории Норвежского, Гренландского и Баренцева морей и проникают в Арктический бассейн, где занимают промежуточный слой на глубинах от 100 до 800 метров (Тимофеев, 1960; Трешников, Баранов, 1972). Атлантическая вода является важным источником тепла в приатлантическом секторе Арктики и источником соли для арктических вод, подвергающихся постоянному опреснению. Постоянный приток тепла от слоя АВ в верхний слой Арктического бассейна ограничивает зимнее нарастание льда, хотя о величине и распределении этого притока нет единого мнения. Все это указывает на то, что поступление АВ является важным климатообразующим процессом в арктической климатической системе и его мониторинг должен быть составной частью слежения за изменениями климата (Alekseev et al., 2003; Polyakov et al., 2003; 2004; Алексеев и др. 2007б).

Поток атлантической воды на протяжении от пролива Фрама до моря Лаптевых включительно сконцентрирован в сравнительно узкой зоне вдоль материкового склона и доступен для мониторинга с помощью современных судов ледокольного типа и небольшого числа длительных заякоренных подводных (и подледных) измерителей течений, температуры и солености воды. Обобщение океанографических данных, собранных в Арктическом бассейне с начала наблюдений, позволило выбрать районы, наиболее освещенные наблюдениями и сформировать климатические ряды характеристик АВ по 2009 год включительно. Одной из таких характеристик является максимальная температура в слое АВ в шести районах Арктического бассейна (рис. 13).

Рис. 13. Изменения максимальной температуры в слое АВ по данным измерений в шести районах Арктического бассейна (на карте слева) по данным 1920–2009 гг.

Приведенные на рис. 13 изменения максимальной температуры АВ показывают начало современного повышения температуры АВ в проливе Фрама в 1987 году, которое разделяется на два этапа. Второй этап повышения температуры начался в 1997 году. Его начало прослеживается и в других рассматриваемых районах с запаздыванием до 8 лет в районе Северного Полюса. В последние годы повышенные значения температуры АВ сохраняются, однако наметилась тенденция к их уменьшению.

Обобщение характеристик слоя АВ по пяти районам в Арктическом бассейне (без пролива Фрама) путем нормирования (на СКО) их аномалий (относительно соответствующих средних за период наблюдений) позволило выявить крупномасштабные изменения максимальной температуры в слое АВ, глубины максимальной температуры и положения верхней границы слоя (рис. 14).

Рис. 14. Нормированные аномалии характеристик слоя АВ, обобщенные по 5 районам Арктического бассейна (без пролива Фрама). Слева направо: максимальная температура воды, глубина максимума температуры, глубина верхней границы слоя (нулевой изотермы)

Несмотря на значительный разброс нормированных аномалий, аппроксимация ортогональными полиномами выделяет междесятилетние колебания характеристик с соответствующими экстремумами. Максимумы температуры АВ приходятся на 1930-е, 1950-е и 1990–2000-е гг. Соответствующие им минимумы глубины максимальной температуры и глубины верхней границы слоя АВ приходятся на эти же периоды.

Сопоставление изменений температуры АВ в Арктическом бассейне и в Cеверной Атлантике, начиная от тропической области (рис. 15), показывает присутствие во всех рассматриваемых рядах сходных междесятилетних изменений с преобладанием роста температуры в последние 30 лет. Исключение составляет район 40°–60° с.ш., где имеет место оппозиция аномалий температуры между восточной и западной частями района.

Рис. 15. Аномалии среднегодовой температуры воды на поверхности Северной Атлантики по данным массива HadSST (слева направо: 10° ю.ш.–10° с.ш.; 20°–40° с.ш.; 40°–60° с.ш.) и нормированные аномалии максимальной температуры АВ. Жирные линии – сглаженные по 11 лет, а для ТАВ – аппроксимированные полиномом

Благодаря активным международным экспедиционным исследованиям в 1990-е и особенно в 2000-е годы, получившим особый размах в период МПГ 2007/08 гг., были получены обширные океанографические данные в разных районах Арктического бассейна. В этот же период стала поступать океанографическая информация с дрейфующих океанографических буев (WHOI). В итоге значительное число океанографических станций покрыло почти всю акваторию Арктического бассейна, что позволило построить средние поля характеристик слоя АВ за десятилетия 1990-х, 2000-х гг. (Алексеев и др., 2009б; 2010а) и сравнить их с полями 1970-х гг., наиболее полно освещенными данными наблюдений в прошлом (Константинов, Грачев, 2000). Метод построения полей представлены в статье (Алексеев и др., 2009б). Аномалии относительно средних за 1970-е годы показаны на рис. 16.

Рис. 16. Аномалии средних за 1990–1999 гг. (верхний ряд) и за 2000–2009 гг. (нижний ряд) относительно 1970-х гг. Слева направо: содержания пресной соды в слое выше изохалины 34.80 (эквивалентный слой, м), глубины верхней границы слоя АВ (м) и максимальной температуры в слое АВ

Наибольшее потепление в слое АВ в рассматриваемый период произошло в основном потоке АВ вдоль материкового склона, а верхняя граница слоя поднялась повсеместно, но более всего (на 60–80 м.) в центральной части Арктического бассейна. Вследствие этих изменений в вертикальной структуре водных масс толщина верхнего опресненного слоя арктической воды уменьшилась над областями максимального потепления и подъема верхней границы слоя АВ и, как следствие, здесь уменьшилось содержание пресной воды в слое над изохалиной 34.80 psu. Произошло перераспределение «избытка» пресной воды в верхнем слое Арктического бассейна, в результате которого увеличилось ее количество в акватории, прилегающей к островам Канадского архипелага и Аляски, что ведет к увеличению стока пресной воды через проливы в Канадском архипелаге. Причем отмеченные изменения усиливались от 1990-х к 2000-м годам.

Обсуждение и выводы

Сравнение ПТВ в области севернее 60° с.ш. в периоды современного потепления и потепления 1920–1940-х гг. показало, что средняя температура за десятилетие 1998–2007 гг. в среднем за год, весной и летом выше, чем в самое теплое десятилетие первого потепления, но зимой соотношение обратное. Тренд средней ПТВ за 31-летний период развития современного потепления (1978–2008 гг.) превышает тренд за такой же период развития первого потепления в теплую половину года, особенно летом. Зимой современный тренд значительно слабее.

1 2 3 4 5 6 7 8 9 10 ... 22
Перейти на страницу:
На этой странице вы можете бесплатно скачать Метеорологические и геофизические исследования - Г. Алексеев торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...