Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Медицина » Полный курс за 3 дня. Нормальная физиология - Аурика Луковкина

Полный курс за 3 дня. Нормальная физиология - Аурика Луковкина

Читать онлайн Полный курс за 3 дня. Нормальная физиология - Аурика Луковкина

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 17
Перейти на страницу:

Тонические нейромоторные единицы характеризуются следующими признаками:

1) в них генерируется местное возбуждение;

2) образованы мелкими мотонейронами;

3) аксоны мотонейронов – нервные волокна группы А;

4) аксоны образуют до нескольких десятков синапсов, за счет чего может возникать суммация нервных импульсов и развиваться импульсное возбуждение;

5) участвуют в поддержании тонуса мускулатуры, а также медленных, длительных сокращений скелетных мышц;

6) не реагируют на одиночный нервный импульс, для их возбуждения необходима серия импульсов.

Физиологические свойства скелетных мышц:

1) возбудимость ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала;

2) проводимость низкая, порядка 10–13 м/с;

3) рефрактерность занимает по времени больший отрезок, чем у нервного волокна;

4) лабильность;

5) сократимость – способность укорачиваться или развивать напряжение.

Различают два вида сокращения:

а) изотоническое сокращение – изменяется длина, тонус не меняется;

б) изометрическое сокращение – изменяется тонус без изменения длины волокна.

Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

6) эластичность – способность развивать напряжение при растягивании.

Физиологической особенностью сердечной мышцы является ее автоматизм – возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

Ультрамикроструктура мышечного волокна

Скелетные мышцы состоят из отдельных миофибрилл – телец толщиной от 0,5 до 2 нм, а длиной – до 2–3 см. Миофибриллы образованы сократительными белками актином и миозином и имеют поперечную исчерченность.

2. Механизмы мышечного сокращения и расслабления

Электрохимический этап мышечного сокращения

1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca2+ и повышению их внутриклеточной концентрации.

Хемомеханический этап мышечного сокращения

Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

1) ионы Ca2+ запускают механизм мышечного сокращения;

2) за счет ионов Ca2+ происходит скольжение тонких актиновых нитей по отношению к миозиновым.

В покое, когда ионов Ca2+ мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательные заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca2+ происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca2+:

1) Ca2+ реагирует с трипонином;

2) Ca2+ активирует АТФ-азу;

3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.

Взаимодействие ионов Ca2+ с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca2+.

Мышечное расслабление, как и сокращение, – активный процесс, для чего необходима энергия АТФ.

1. Мышечное расслабление осуществляется за счет распада кальциевых мостиков, что происходит в результате уменьшения количества ионов Ca2+ в межфибриллярном пространстве. Ионы Ca2+ путем активного транспорта возвращаются в саркоплазматическую сеть за счет деятельности кальциевого насоса.

2. В середине XX в. был обнаружен белок – фактор Мари-Бендалла, обеспечивающий способность актина возвращаться обратно.

3. Молекула АТФ является биологической «смазкой» – уменьшает силу трения между фибриллами и способствует возвращению актина и миозина в исходное положение.

4. При расслаблении играет важную роль пассивный механизм за счет эластичности мышечной ткани.

3. Анатомические, физиологические и функциональные особенности гладких мышц. Механизм сокращения гладкой мускулатуры

Гладкомышечная ткань состоит из отдельных клеток. Они имеют веретенообразную форму, длину от 2 до 10 нм, ширину от 50 до 400–500 мкм. Мембраны этих клеток тесно прилегают друг к другу. В месте контакта двух соседних гладкомышечных клеток образуются нексусы – электрические синапсы. В результате этого формируется функциональный синцитий. Гладкие мышцы имеют большое количество актиновых и миозиновых волокон, которые распределяются неравномерно, в результате чего при микроскопии в гладкомышечной ткани отсутствует поперечная исчерченность. Гладкомышечные клетки бедны саркоплазматической сетью, ионы кальция, необходимые для сокращения, поступают из внеклеточного пространства. Иннервация гладкой мускулатуры осуществляется вегетативной нервной системой, работа внутренних органов не контролируется сознанием человека и гладкие мышцы не подвергаются произвольной регуляции.

Физиологические свойства гладких мышц

1. Возбудимость ниже, чем у поперечно-полосатой мускулатуры. Это объясняется тем, что в возникновении потенциала действия важную роль играют ионы Ca2+. Они проникают вглубь клетки через медленные кальциевые каналы. Так как в гладкой мускулатуре плохо развит саркоплазматический ретикул, то и ионы кальция будут доставляться в меньшем количестве, а соответственно, будет снижаться возбудимость. Гладкие мышцы не реагируют на одиночное раздражение, для возникновения мышечного сокращения необходима серия нервных импульсов с частотой не менее 1 импульса в минуту.

2. Проводимость ниже, чем у скелетной мускулатуры. Скорость проведения возбуждения в гладкой мускулатуре составляет 0,01–0,02 м/с. За счет этого волна возбуждения распространяется медленно – возможно обеспечение перистальтической функции полых органов.

3. Рефрактерность больше, чем у скелетных мышц. Рефрактерный период удлиняется за счет относительного рефрактерного периода и составляет от 80–500 мс до нескольких секунд.

4. Лабильность низкая. При рефрактерном периоде, равном 1 с, регистрируется 1 волна возбуждения.

5. Сократимость. Гладкие мышцы сокращаются медленно, но могут развивать значительную силу. Они способны выполнять функцию длительного сокращения с минимальной затратой энергии, что особенно важно в полых органах. Гладкие мышцы имеют более низкую по сравнению со скелетными частоту сокращения (примерно в 100–1000 раз). Это происходит за счет удлинения одиночного мышечного сокращения.

За счет наличия медленного сокращения даже под влиянием редких импульсов мышечная ткань может приходить в состояние длительного сокращения, напоминающее тетанус.

Функциональные особенности гладкомышечной ткани

Гладкие мышцы обладают спонтанной электрической активностью, автоматией, они способны самостоятельно генерировать потенциал действия (мышцы желудка, кишечника, мочеточника, сосудов). Это объясняется тем, что гладкомышечная клетка имеет нестабильную величину мембранного потенциала. В состоянии покоя мембранный потенциал постепенно уменьшается и в определенный момент достигает критического уровня деполяризации – возникает потенциал действия. Он имеет миогенную природу. Этот потенциал генерируется постоянно, в том числе в состоянии покоя, обеспечивая тонус гладкой мускулатуры, или базальный тонус.

Однако не все гладкомышечные клетки обладают способностью к автоматии. Такое свойство отсутствует у мышц артерий, радужной оболочки глаза, связочного аппарата матки, ресничной мышцы. В этих мышцах возможно возникновение только нейрогенного потенциала действия.

Гладкие мышцы реагируют на растяжение сокращением. При растяжении гладких мышц деформируются клеточные мембраны и возникает деполяризация. Происходит сокращение гладкомышечных клеток. Например, по этому механизму происходит миогенная ауторегуляция сосудистой стенки. При снижении давления в сосуде гладкая мускулатура сокращается, просвет сосуда уменьшается, объем крови не изменяется, кровообращение органа не нарушается.

1 2 3 4 5 6 7 8 9 10 ... 17
Перейти на страницу:
На этой странице вы можете бесплатно скачать Полный курс за 3 дня. Нормальная физиология - Аурика Луковкина торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...