Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » 7. Физика сплошных сред - Ричард Фейнман

7. Физика сплошных сред - Ричард Фейнман

Читать онлайн 7. Физика сплошных сред - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 43 44 45 46 47 48 49 50 51 ... 62
Перейти на страницу:

Дифференцируя уравнение (38.26), получаем

Действие этого полного момента должно вызвать угловое ускорение отрезка стержня. Масса его равна

где r — плотность материала. В гл. 19 (вып. 2) мы нашли, что момент инерции кругового цилиндра равен mr2/2; обо­значая момент инерции нашего отрезка через Dl, получаем

Закон Ньютона говорит нам, что момент силы равен произ­ведению момента инерции на угловое ускорение, или

Собирая теперь все воедино, находим

или

Вы, должно быть, уже узнали, что это такое: это одномерное волновое уравнение. Мы получили, что волны кручения распространяются по стержню со скоростью

Чем плотнее стержень при одной и той же жесткости, тем мед­леннее движется волна, а чем он жестче, тем волна бежит бы­стрее. Скорость ее не зависит от диаметра стержня.

Волны кручения представляют частный случай волн сдвига. Волны сдвига в общем случае — это такие волны, при которых деформация не изменяет объема любой части материала. В вол­нах кручения мы сталкиваемся с особым распределением нап­ряжений сдвига — они распределены по кругу. Но волны при любом распределении напряжений сдвига будут распростра­няться с одной и той же скоростью, которая определяется фор­мулой (38.32). Сейсмологи, например, обнаружили, что такие волны сдвига распространяются и внутри Земли.

В мире упругих явлений возможен и другой сорт волн внут­ри твердого материала. Если вы толкнете что-нибудь, то можете возбудить «продольные» волны, так называемые волны «сжа­тия». Они подобны звуковым волнам в воздухе или в воде, т. е. перемещение вещества в них происходит в ту же сторону, что и распространение волны. (На поверхности упругого тела мо­гут распространяться и другие типы волн, называемые «вол­нами Рэлея». Деформация в них ни продольная, ни поперечная. Однако у нас нет времени говорить о них подробно.)

Раз уж мы коснулись вопроса о волнах, то какова скорость волн чистого сжатия в большом твердом теле, подобном Земле? Я сказал в «большом», ибо скорость звука в массивном теле отлична от скорости, свойственной, скажем, тонкому стерж­ню. Под массивным телом я подразумеваю тело, поперечные раз­меры которого много больше длины волны звука. Поэтому, нажимая на такой объект, можно обнаружить, что он не «раз­дается» в стороны — он может сжиматься только в одном нап­равлении. К счастью, однако, мы уже разобрали специаль­ный случай сжатия «сдавленного» упругого материала, а в гл. 47 (вып. 4) мы познакомились еще со скоростью звука в газе. Рас­суждая так же, как и выше, вы можете убедиться, что скорость звука в твердом теле равна Ц(Y'/r), где Y' — «продольный мо­дуль», т. е. давление, деленное на относительное изменение длины (для случая «сдавленного» стержня). Равно это просто отношению Dl/l к F/A, полученному нами в уравнении (38.20). Таким образом, скорость продольных волн определяется выра­жением

Поскольку значение s заключено между 0 и 1/2, то модуль сдвига m меньше модуля Юнга Y, a Y', кроме того, больше Y, так что

m<Y<Y'.

Это означает, что продольные волны распространяются быстрее, чем волны сдвига. Один из наиболее точных способов определе­ния упругих постоянных вещества дает измерение плотности материала и скоростей двух сортов волн. Из этой информации можно получить как Y, так и s. Кстати, именно измеряя раз­ность во времени прихода двух сортов волн от землетрясения, сейсмологи только по сигналам, принятым одной станцией, способны установить расстояние до эпицентра.

§ 4. Изгибание балки

Разберем теперь другой практический вопрос — изгибание балки, стержня или бруска. Чему равны силы, необходимые для изгибания балки произвольного поперечного сечения?

Мы определим эти силы для балки круглого сечения, но ответ будет пригоден для балки любой формы. Чтобы сберечь время, мы кое-где упростим дело, так что теория, которую мы разовьем, будет только приближенной. Наши результаты верны лишь при том условии, что радиус изгиба­ния много больше толщины балки.

Представьте, что вы ухватились за оба конца прямой балки и согнули ее в виде кривой, похожей на ту, что изображена на фиг. 38.11.

Фиг. 38.11. Изогнутая балка.

Что же происходит внутри балки? Раз она искрив­лена, значит, материал на внутренней стороне сгиба сжат, а на внешней стороне растянут. Но имеется какая-то поверхность, более или менее параллельная оси балки, которая и не сжата, и не растянута. Называется она нейтральной поверхностью. По-видимому, эта поверхность проходит где-то «посредине» поперечного сечения. Можно показать (но я не буду этого здесь делать), что для небольшого изгиба простой балки нейтральная поверхность проходит через «центр тяжести» поперечного се­чения. Но это справедливо только для «чистого» сгиба, т. е. когда балка не растягивается и не сжимается как целое.

При чистом сгибе тонкий поперечный отрезок балки возму­щен (фиг. 38.12, а).

Фиг. 38.12. Маленький отрезок изогнутой балки (а) и поперечное сечение балки (б).

Материал под нейтральной поверхностью испытывает деформацию сжатия, которая пропорциональна рас­стоянию от нейтральной поверхности, а материал над ней ра­стянут тоже пропорционально расстоянию от нейтральной по­верхности. Таким образом, продольное удлинение Dl пропорцио­нально высоте у. Константа пропорциональности равна просто длине l, деленной на радиус кривизны балки (см. фиг. 38.12):

Dl/l=y/R.

Так что напряжение, т. е. сила, действующая на единичную площадь в некоторой маленькой полоске вблизи у, тоже про­порциональна расстоянию от нейтральной поверхности

Теперь рассмотрим те си­лы, которые привели бы к подобной деформации. Силы, действующие на маленький отрезок, изображенный на фиг. 38.12, показаны на том же рисунке. Если мы возьмем любое поперечное сечение, то действующие на нем силы направлены в одну сторону выше нейтральной поверхно­сти и в другую — ниже ее. Получается пара сил, кото­рая создает «изгибающий мо­мент», под которым мы понимаем момент силы относительно нейтральной линии. Интегрируя произведение силы на расстояние от нейтральной поверхности, можно вычислить полный момент на одной из граней отрезка фиг. 38.12:

Согласно (38.34), dF=Y(y/R)dA, так что

Но интеграл от y2dA можно назвать «моментом инерции» гео­метрического поперечного сечения относительно горизонталь­ной оси, проходящей через его «центр масс»; мы будем обоз­начать его через I, т. е.

Уравнение (38.36) дает нам соот­ношение между изгибающим момен­том и кривизной балки 1/R. «Жесткость» балки пропорциональна Y и моменту инерции I. Другими словами, если вы хотите какую-то балку, скажем из алюминия, сделать как можно жестче, то вы должны как можно больше вещества поме­стить как можно дальше от оси, относительно которой берется момент инерции. Но этого нельзя доводить до предела, ибо тогда балка не будет искривляться так, как мы предположили: она согнется или скрутится и снова станет слабее. Вот почему каркасные балки делают в форме буквы I или Н (фиг. 38.13).

Фиг. 38.13. Двутавровая балка.

В качестве примера применения нашего уравнения (38.36) для балки вычислим отклонение консольной балки под дейст­вием сосредоточенной силы W, действующей на ее свободный конец (фиг. 38.14).

Фиг. 38.14. Консольная балка с нагрузкой на конце.

(Консольная балка закреплена одним концом, который вмурован в стенку.) Какая же тогда будет форма балки? Обозначим отклонение на расстоянии х от зак­репленного конца через z; мы хотим найти z(x). Будем вычис­лять только малые отклонения. Как вы знаете из курса мате­матики, кривизна 1/R любой кривой z(x) задается выражением

Нас интересуют только малые изгибы (обычная вещь в ин­женерных конструкциях), поэтому квадратом производной (dz/dx)2можно пренебречь по сравнению с единицей и считать

Нам нужно еще знать изгибающий момент . Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен

1 ... 43 44 45 46 47 48 49 50 51 ... 62
Перейти на страницу:
На этой странице вы можете бесплатно скачать 7. Физика сплошных сред - Ричард Фейнман торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...