Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер

Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер

Читать онлайн Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 42 43 44 45 46 47 48 49 50 ... 56
Перейти на страницу:

Ричард Фейнман (1918-1988)

Фейнман принадлежал к совсем другому типу людей. Он любил развлечения и часто посещал увеселительные заведения. В одном баре со стриптизом его видели так часто, что кто-то из репортёров в конце концов поинтересовался, не жалко ли ему тратить на это столько времени. «Ничуть, – ответил Фейнман, – в такой атмосфере легче думается.»

На Фейнмана большое влияние оказал его отец. Он проводил с сыном много времени и учил его любить природу во всех проявлениях. Когда Ричарду было около 13 лет, он решил освоить дифференциальное и интегральное исчисление и отправился за учебником в библиотеку, но получил там отказ. Библиотекарь сказал, что он ещё мал читать такие книги. Ричарду пришлось соврать, что он берёт книгу для своего отца. Эта уловка подействовала, он унёс учебник домой и вскоре полностью освоил его. Позже он к своему изумлению узнал, что отец совершенно не знаком с высшей математикой. Так Ричард впервые превзошёл отца.

В 21 год Фейнман получил диплом бакалавра в Массачусетском технологическом институте, а спустя два года защитил в Принстонском университете докторскую диссертацию. Вскоре после этого он поехал в Лос-Аламос, где участвовал в создании атомной бомбы. «Это ужасное оружие, его огромный потенциал поселил во мне страх», – писал позже Фейнман. После испытания бомбы он ощутил вину: «Когда я напился в Лос-Аламосе, празднуя "успешное" применение атомной бомбы, в Хиросиме умирали люди…»

Хотя Нобелевская премия была присуждена Фейнману за чисто «практическую» работу по перенормировке, он часто повторял, что занимается вычислениями из любви к искусству, причём ему всё равно, важна ли задача и представляет ли она практический интерес. Кроме Нобелевской премии Фейнман получил ещё множество наград, но относился к ним без пиетета. «Я не люблю почести», – сказал он в одном из последних интервью. «Я уже получил награду – удовлетворение от открытия и от того, что им пользуются другие.» С 1950 года он неизменно занимал должность профессора теоретической физики в Калифорнийском технологическом институте.

Создавая свою методику перенормировки, Фейнман придумал очень полезный способ графического изображения взаимодействий. На основе его диаграммы можно записывать математические формулы, отображающие рассматриваемый процесс. Одну из таких диаграмм мы уже использовали, когда рассматривали взаимодействие двух электронов. Другая показана ниже, на ней изображены испускание и последующее поглощение фотона электроном.

Испускание и

последующее поглощение

фотона электроном

Сразу же возникает вопрос: а разве такой процесс возможен? Ведь здесь нарушается закон сохранения – вначале был только электрон, потом появился ещё и фотон, а значит, сумма масс электрона и фотона должна быть больше массы одного электрона. Всё это так, но из создавшегося положения есть выход. На выручку приходит принцип неопределённости – один из краеугольных камней квантовой теории. Этот принцип гласит, что на микроскопическом уровне природе присуща своеобразная «размытость», и в результате в момент измерения энергия частицы имеет некоторую неопределённость. Получается, что можно «одолжить» маленькую порцию энергии при условии, что она тут же будет возвращена. Это похоже на то, как если бы вы взяли деньги из банка и положили их обратно, прежде чем об этом узнала жена. Выглядит это так, как будто они всё время мирно лежали на счету.

Упрощённое изображение облака

виртуальных фотонов,

окружающих электрон

Таким образом, можно считать, что электрон постоянно испускает и поглощает фотоны, иными словами, он постоянно окружён облаком фотонов. Их, конечно, нельзя ни увидеть, ни зарегистрировать; такие фотоны называют виртуальными.

Взаимодействие двух облаков

виртуальных фотонов.

Этот процесс можно сравнить

с перебрасыванием мяча

Теперь рассмотрим подробнее рассеяние электрона на электроне, используя приведённую выше диаграмму. Предположим, что два электрона проходят достаточно близко друг от друга и в результате отклоняются от своих первоначальных траекторий. С точки зрения квантовой электродинамики, в этом случае происходит взаимодействие двух облаков виртуальных частиц. Некоторые фотоны из одного облака могут перепрыгнуть в другое облако. Чтобы понять, почему в результате происходит изменение траекторий, обратимся к аналогии с двумя фигуристами, перебрасывающимися мячом. Первый фигурист бросает мяч и в соответствии с третьим законом Ньютона немного отъезжает в обратном направлении, точно так же, как откатывается орудие при выстреле. Второй фигурист, ловящий мяч, испытает при этом толчок, как если бы его кто-то толкнул, т.е. происходит передача импульса.

Эффект Комптона.

Поглощение фотона электроном

и испускание его через

короткий промежуток времени

Есть, конечно, множество допускаемых квантовой электродинамикой взаимодействий, и каждое из них можно представить соответствующей фейнмановской диаграммой. Выше на рисунке приведена ещё одна диаграмма, изображающая эффект Комптона (он назван по имени учёного, впервые детально изучившего это явление). В нижней вершине фотон (?) поглощается электроном (e), а затем через очень короткое время он вновь испускается в верхней вершине. Для того чтобы проводить вычисления при помощи этой диаграммы, очевидно, нужно знать энергию и импульс (меру инерции) как фотона, так и электрона в нижней вершине. Задача тогда состоит в том, чтобы определить те же параметры в верхней вершине. Решению таких задач собственно и посвящена квантовая электродинамика.

Рассеяние электрона

на электроне

Вернёмся ненадолго к рассеянию электрона на электроне, которое можно изобразить в виде диаграммы первого порядка, т.е. той диаграммы, которой следует пользоваться в теории возмущений для расчётов первого порядка. Но, как говорилось раньше, 185 есть ещё расчёты второго, третьего и более высоких порядков, которые тоже вносят свой вклад в конечный результат. При помощи фейнмановской диаграммы типичный процесс второго порядка можно представить так:

Другие диаграммы второго порядка имеют следующий вид:

На самом деле можно изобразить несколько таких диаграмм и ещё больше диаграмм третьего порядка. Глядя на эти рисунки, можно понять, почему расчёты второго и более высоких порядков вносят меньший вклад по сравнению с вычислениями первого порядка. При взаимодействии с участием двух частиц приведённого выше типа каждая пара вершин вносит в вычисления множитель 1/137, а так как таких пар две, вклад будет в 137 раз меньше.

Теперь ясно, откуда берутся бесконечности. Рассмотрим заряд электрона; его легко измерить и убедиться, что он имеет конечное значение. Однако при вычислениях второго порядка он становится бесконечным. Чтобы понять причину, вспомним, как мы представляем себе электрон. Предполагается, что он окружён облаком частиц, которые маскируют (экранируют) его истинный заряд. Точно так же маскируется и его истинная («голая») масса. В соответствии с такой точкой зрения наблюдаемые заряд и масса электрона являются не истинными величинами, а подвержены действию экранирования. Обойти эту трудность можно прибегнув к вычитанию. Если масса, например, состоит из наблюдаемой и «голой» (бесконечной) масс, нужно вычесть эту бесконечную величину. (Аналогичное вычитание производится и для заряда.) Эта операция называется перенормировкой, а её результат находится в поразительном соответствии с наблюдениями.

Однако этот метод нравится отнюдь не всем, ведь что ни говори, а бесконечность плюс масса минус бесконечность на самом деле не равняется в точности массе? Почему же тогда перенормировка «работает»? Может быть, мы просто не до конца понимаем, что делаем? Отчасти это верно. Возникают даже сомнения в справедливости применяемой теории, и полностью развеять эти сомнения нельзя, так как никто точно не знает, насколько она верна. Приходится делать вид, что всё в порядке, закрывая глаза на имеющиеся трудности, и находить оправдание в том, что теория хорошо описывает результаты наблюдений.

Юкава

Квантовая электродинамика оказалась настолько удачной, что скоро по её подобию стали строить теории других взаимодействий, в частности слабых и сильных, в которых было ещё много неясностей. Одним из первых это попробовал сделать 28-летний японский физик, который хотел стать экспериментатором, но не смог овладеть требующимися для этого навыками и потому неохотно переключился на теоретическую физику. Звали его Хидэки Юкава.

1 ... 42 43 44 45 46 47 48 49 50 ... 56
Перейти на страницу:
На этой странице вы можете бесплатно скачать Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...