Категории
Самые читаемые книги
ЧитаемОнлайн » Разная литература » Зарубежная образовательная литература » Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл

Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл

Читать онлайн Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 116
Перейти на страницу:
в веселую игру? Секрет лежит в операционном тесте на конфаундеры, называемом критерием черного хода. Этот критерий превращает проблему определения конфаундеров, их поиска и ввода поправок по ним в рутинную задачу, ничуть не более сложную, чем решение журнальной головоломки. Он привел столетнюю, упорную проблему к благополучному разрешению.

Оператор Do и критерий черного хода

Чтобы понять, как работает критерий черного хода, лучше сначала интуитивно представить себе, как двигается информация в каузальной диаграмме. Мне нравится представлять связи как трубы, по которым информация распространяется от стартовой точки X до финиша Y. Не забывайте, что распространение информации идет одновременно по двум направлениям — по каузальному и некаузальному, как мы видели в главе 3.

На самом деле некаузальные пути как раз и являются источником конфаундеров. Вспомним, что я определяю их как все, что вынуждает P (Y | do (X)) отличаться от P (Y | X). Оператор do стирает все стрелки, которые входят в X и предотвращает движение информации от X в некаузальном направлении. Таким же эффектом обладает рандомизация. Наконец, к тому же самому приводит введение статистических поправок, если правильно выбрать переменные, по которым эти поправки следует вводить.

В предыдущей главе мы рассмотрели три правила, которые рассказывают нам, как остановить поток информации по любому отдельно взятому соединению. Я повторю их, чтобы подчеркнуть:

а) в соединении типа «цепочка» A → B → C введение поправок по B предотвращает движение информации об А к C и наоборот;

б) в вилке, или вмешивающемся соединении A ← B → C поправки по B также предотвращают движение информации об А к C и наоборот;

в) в коллайдере A → B ← C действуют прямо противоположные правила. Переменные A и C изначально независимы, поэтому информация об А ничего не говорит о C. Но если вы вводите поправки по B, информация начинает распространяться по «трубе», благодаря эффекту объяснения. Мы должны также держать в уме еще одно фундаментальное правило:

г) выравнивание по нисходящей или опосредованной переменной подобно частичному выравниванию по исследуемой переменной. Выравнивание по переменной, нисходящей по отношению к медиатору, частично закрывает трубу; выравнивание по переменной, нисходящей по отношению к точке схождения, частично открывает трубу.

А что же будет в случае более длинных труб с большим числом соединений, вроде такой: A ← B ← C → D ← E → F → → G → H ← I ← J?

Ответ очень прост: если хоть одна связь окажется заблокирована, то J ничего не сможет «узнать» про A по этому пути. Таким образом, у нас множество вариантов прервать сообщение между A и J: вводить поправки по B, по С, не вводить поправки по D (потому что это коллайдер), вводить по E и т. д. Достаточно любого из этих вариантов.

Вот почему обычная статистическая процедура выравнивания по всем параметрам, которые только можно измерить, так ошибочна. На самом деле приведенный выше путь заблокирован даже в том случае, если мы не вводим никаких поправок! Коллайдеры к D и G закрывают путь без посторонней помощи. Введение поправок по D и G откроет этот путь и позволит J «услышать» A.

Итак, чтобы устранить конфаундеры между X и Y, нам необходимо только заблокировать все некаузальные пути между ними, не блокируя и не нарушая каузальные пути. Выражаясь точнее, путь черного хода — это любой путь от X до Y, который начинается со стрелки, входящей в Х. Конфаундеры между X и Y будут устранены, если мы закроем все черные ходы (потому что такие пути допускают ложную корреляцию между X и Y). Если мы делаем это, выравнивая выборку по некоторому набору переменных Z, следует также убедиться, что ни один фактор из Z не является нисходящей переменной по отношению к X на каузальном пути, иначе этот путь полностью или частично закроется.

Вот и все! С этими правилами устранение конфаундеров становится настолько элементарным делом, что можно воспринимать его как игру. Я предлагаю вам несколько примеров, чтобы войти во вкус и увидеть, как это просто. Если вам все еще кажется, что это сложно, будьте уверены, что существуют алгоритмы, решающие все эти задачи в течение наносекунд. В каждом случае цель игры — определить набор переменных, которые устранят конфаундеры между X и Y. Другими словами, они не должны исходить от X и они должны блокировать все черные ходы.

Игра 1

Эта — совсем простая! К X не идет ни одной стрелки, следовательно, черных ходов нет. Нам не нужно вводить никаких поправок.

Тем не менее некоторые исследователи сочтут B конфаундером. Оно связано с X по цепочке XA → B. Оно связано с Y у особей, у которых X = 0, потому что имеется открытый путь BAY, не проходящий через Х. И при этом B не находится на каузальном пути XAY. Таким образом, оно проходит трехступенчатое «классическое эпидемиологическое» определение конфаундера, но не соответствует критерию черного хода и поправки, введенные по нему, чреваты неприятностями.

Игра 2

В этом примере следует рассматривать A, B, C и D как «доэкспериментальные» переменные (экспериментальное воздействие, как всегда, обозначено X). Теперь имеется один черный ход X ← A → B ← D → E → Y. Этот путь уже блокирован коллайдером в B, поэтому нам опять не нужно вводить никаких поправок. Многие статистики стали бы выравнивать выборки по B или C, думая, что в этом нет вреда, поскольку они случаются до опыта. Один известный статистик еще совсем недавно писал: «Избегание введения поправок по некоторым наблюдаемым ковариантам… это ненаучная кустарщина». Он неправ: поправки по B или C — плохая идея, потому что они откроют некаузальный путь и создадут конфаундеры между X и Y. Обратите внимание, что в этом случае мы можем снова закрыть этот путь, корректируя по A или D. Этот образец показывает, что доступны различные стратегии устранения конфаундеров. Одни исследователи пойдут легким путем и не будут вводить никаких поправок; более традиционный подход предполагает корректировку по С и D. Оба варианта верны и приведут к одному и тому же результату (если модель верна, а выборка достаточно велика).

Игра 3

В играх 1 и 2 вам не нужно было ничего делать, но теперь придется. Имеется

1 ... 41 42 43 44 45 46 47 48 49 ... 116
Перейти на страницу:
На этой странице вы можете бесплатно скачать Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...