Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Энциклопедии » Энциклопедия «Техника» (с иллюстрациями) - Александр Горкин

Энциклопедия «Техника» (с иллюстрациями) - Александр Горкин

Читать онлайн Энциклопедия «Техника» (с иллюстрациями) - Александр Горкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 40 41 42 43 44 45 46 47 48 ... 58
Перейти на страницу:

ГЕНЕРÁТОР ЭЛЕКТРИ́ЧЕСКИЙ, устройство, преобразующее механическую, тепловую, электромагнитную, световую и другие виды энергии в электрическую. К таким устройствам относятся турбо – и гидрогенераторы, термогенераторы, магнитогидродинамические генераторы, термоэмиссионные преобразователи, солнечные батареи, атомные и изотопные батареи. Все эти устройства считаются физическими источниками тока, в отличие от химических источников, вырабатывающих электрическую энергию в результате окислительно-восстановительных реакций (гальванические элементы, электрические аккумуляторы, топливные элементы).

ГЕНЕРÁТОР ЭЛЕКТРИ́ЧЕСКИХ КОЛЕБÁНИЙ, устройство для преобразования различных видов электрической энергии в энергию электрических (электромагнитных) колебаний. По форме электрических колебаний различают: генераторы синусоидальных (гармонических) колебаний, импульсные генераторы, генераторы колебаний специальной формы. Генерирование электрических колебаний осуществляется обычно путём преобразования энергии источников постоянного тока с помощью электронных приборов. В зависимости от типа применяемых приборов различают генераторы на электронных лампах, полупроводниковых приборах (транзисторные, диодные генераторы), магнетронных приборах (магнетроны, стабилитроны), газоразрядных приборах (тиратронные генераторы), а также квантовые генераторы (мазеры, лазеры).

Необходимыми элементами генераторов электрических колебаний являются: источник энергии, пассивные цепи, в которых возбуждаются и поддерживаются колебания, и активный элемент, в котором энергия источника питания преобразуется в энергию генерируемых колебаний. В качестве активных элементов часто используются электронные приборы в сочетании с цепями обратной связи.

Если подводимая в пассивные цепи энергия превосходит потери энергии в них, то любой возникший в них колебательный процесс будет нарастать. Если потери энергии превышают её поступление, то колебания затухают. Энергетическое равновесие, соответствующее стационарному режиму генераторов электрических колебаний, возможно лишь при наличии у элементов системы нелинейных свойств. Если цепи, в которых возбуждаются и поддерживаются электрические колебания, сами по себе обладают колебательными свойствами (такие, как колебательный контур или объёмный резонатор), то частота и форма генерируемых колебаний определяются частотой и формой собственных колебаний этих цепей. В зависимости от диапазона частот генерируемых колебаний различают генераторы очень низкой частоты (3—30 кГц), низкой частоты (30—300 кГц), высокой частоты (300 кГц —300 МГц) и т. д.

Применяются генераторы электрических колебаний в измерительной аппаратуре, передающих и приёмных радиовещательных, телевизионных, радиолокационных и других устройствах, промышленных установках индукционного нагрева, бытовых приборах и т. п.

ГЕОСТАЦИОНÁРНЫЙ ИСКУ́ССТВЕННЫЙ СПУ́ТНИК ЗЕМЛИ́, искусственный спутник Земли, постоянно находящийся над определённой точкой земного экватора. Имеет круговую орбиту, удалённую от поверхности Земли примерно на 36 000 км, и период обращения, равный звёздным суткам (23 ч 56 мин 4 с); движется в восточном направлении. При этих условиях спутник занимает постоянное положение относительно земной поверхности. С геостационарного спутника Земля видна под углом 17°, что позволяет видеть со спутника примерно 1/3 площади земной поверхности. Геостационарные спутники широко используются для ретрансляции радио – и телевизионных передач и радиосвязи между наземными станциями, расположенными за пределами прямой видимости друг друга. Они обеспечивают возможность ретрансляции сразу нескольких телевизионных программ и связи по нескольким тысячам телефонных каналов. Для связи через искусственный спутник используются диапазоны дециметровых и сантиметровых волн. Для энергоснабжения бортовой аппаратуры на спутнике установлены солнечные батареи (мощностью до 10 кВт). Первый геостационарный искусственный спутник земли «Синком-3» (США) выведен на орбиту в 1964 г.

ГЕОТЕРМÁЛЬНАЯ ЭЛЕКТРОСТÁНЦИЯ, тепловая электростанция, использующая внутреннее тепло Земли для выработки электроэнергии и теплоснабжения. Практически единственными источниками геотермальной энергии являются парогидротермы (месторождения самоизливающейся паровоздушной смеси или пара) и гидротермы (месторождения самоизливающейся горячей воды), которые используются для получения как электрической энергии (при температуре пара или паровоздушной смеси более 150 °C), так и тепловой (при температуре 30—150 °C). Однако такие парогидротермальные месторождения расположены лишь в районах активной вулканической деятельности. На геотермальных электростанциях паровоздушная смесь из природного источника, выведенная на поверхность, как правило, по специально пробуренным скважинам, направляется в сепараторационные устройства, где пар отделяется от воды. Затем отсепарированный пар поступает в паровую турбину, а горячая вода (при температуре примерно 120 °C) используется для теплоснабжения и других целей. В некоторых случаях перед турбиной устанавливаются устройства, предварительно очищающие пар от агрессивных (сильно корродирующих) газов. В отличие от других тепловых электростанций, на геотермальных электростанциях нет котельного цеха, золоулавливателей и многих других устройств; практически геотермальная электростанция состоит лишь из машинного зала и помещения для электротехнических устройств. Себестоимость электроэнергии на таких электростанциях значительно ниже, чем на тепловых электростанциях.

Схематическое устройство геотермальной электростанции:

1 – вода; 2 – пар; 3 – насос; 4 – паровая турбина; 5 – электроэнергия; 6 – генератор

В России первая геотермальная электростанция (Паужетская, на юге Камчатки) мощностью 5 МВт введена в эксплуатацию в 1966 г. В последующие годы её мощность была увеличена до 11 МВт. За рубежом геотермальные электростанции построены (или сооружаются) в Италии (Тоскана, район Лардерелло), Новой Зеландии (зона Таупо), США (Калифорния – Долина Больших Гейзеров) и Японии.

В районе Рейкьявика (Исландия) геотермальные воды используются для теплофикации. Суммарная установленная мощность всех геотермальных электростанций мира в 1980 г. составляла 2.5 тыс. МВт, в 2000 г. – ок. 17 тыс. МВт. Геотермальные ресурсы планеты практически безграничны. Однако на современном этапе развития науки и техники их практическое использование проблематично.

ГЕРÓН АЛЕКСАНДРИ́ЙСКИЙ (ок. 1 в.), древнегреческий учёный, жил и работал в Александрии. Изобрёл ряд приборов и автоматических устройств, в частности прибор для измерения протяжённости дорог, действовавший по принципу современного таксометра, а также автомат для продажи «священной» воды, водяные часы и др.

ГЕТЕРОПЕРЕХÓДНЫЙ ПОЛУПРОВОДНИКÓВЫЙ ПРИБÓР, полупроводниковый прибор, содержащий один или несколько гетеропереходов – контактов между двумя разными по химическому составу или фазовому состоянию полупроводниками. Гетеропереходный полупроводниковый прибор может быть аналогом обычного полупроводникового прибора (напр., диода, транзистора) либо представлять собой оригинальное устройство (напр., гетеропереходный преобразователь инфракрасного излучения в видимое). Создана целая группа таких гетеропереходных приборов: инжекционные лазеры, различные виды диодов, источники света, фотоприёмники, фотоэлементы, датчики механических напряжений на основе пьезо – и сегнетоэлектриков, приборы с зарядовой связью.

Первый в мире гетероинжекционный лазер был создан коллективом учёных под руководством Ж. И. Алфёрова в 1968 г. В 1970 г. этот коллектив создал первый диод на гетеропереходе, а в 1971 г. – первый транзистор. Алфёров и Г. Крёмер (США) открыли и усовершенствовали скоростные опто – и микроэлектронные компоненты на базе многослойных полупроводников – гетероструктур. Созданные на их основе быстродействующие транзисторы широко применяются в мобильных телефонах и системах спутниковой связи. Разработанные по этой же технологии лазерные диоды передают информацию по оптоволоконным телефонным линиям и сетям Интернета. Они используются в проигрывателях компакт-дисков, устройствах для считывания товарных ярлыков со штрих-кодом в магазинах, лазерных указках и множестве других современных электронных приборов. В 2000 г. Ж. И. Алфёрову и Г. Крёмеру за создание гетеропереходных полупроводниковых приборов присуждена Нобелевская премия в области физики.

ГЕТИНÁКС, слоистый пластик на основе бумаги, пропитанной термореактивными синтетическими смолами, гл. обр. фенолоформальдегидными. Основу – бумагу из сульфитной и сульфатной целлюлозы или сульфатно-тряпичную бумагу, а также асбестовую, содержащую небелёную целлюлозу (асбогетинакс), или синтетическую бумагу (органогетинакс) – пропитывают раствором предварительно нагретой смолы, сушат, режут, прессуют при 150 °C и давлении 15 МПа. Выпускается в виде листов или цилиндрических заготовок по технологии изготовления композиционных материалов (напр., штампованием или намоткой). Отличается высокими механическими и электроизоляционными свойствами. Плотность 1200–1800 кг/мі, удельное электрическое сопротивление 1010 —1017 Ом·см; теплостойкость от 150 до 300 °C (для асбогетинакса). С поверхности покрывают медной фольгой, стеклянной, асбестовой или хлопчатобумажной тканью; иногда ткань или металлическую сетку используют в качестве внутреннего слоя, повышающего прочность изделия. Применяют в производстве электроизоляционных деталей для радиотелефонной и телевизионной аппаратуры, печатных схем, втулок, шестерёнок и др.; гетинакс с наружным декоративным слоем используют при облицовке мебели и интерьеров.

1 ... 40 41 42 43 44 45 46 47 48 ... 58
Перейти на страницу:
На этой странице вы можете бесплатно скачать Энциклопедия «Техника» (с иллюстрациями) - Александр Горкин торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...