Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Курс истории физики - Кудрявцев Степанович

Курс истории физики - Кудрявцев Степанович

Читать онлайн Курс истории физики - Кудрявцев Степанович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 41 42 43 44 45 46 ... 148
Перейти на страницу:

Итак, Эйлер рассматривает ньютоновское абсолютное пространство как удобную математическую абстракцию, полезную для описания механического движения тел. Из других его трудов, в частности из известной научно-популярной книги «Письма к немецкой принцессе», видно, что в его физических воззрениях картезианская концепция непрерывной материальной среды занимала важное место.

Эйлер следует Ньютону и в определении основных понятий динамики — силы и массы. «Сила есть то усилие, которое переводит тело из состояния покоя в состояние движения или видоизменяет его движение». Отсюда в качестве следствия получается закон инерции: «Всякое тело, предоставленное самому себе, или пребывает в покое, или движется равномерно и прямолинейно». Эйлер заранее предупреждает читателя, что он под словами «движение» и «покой» всегда подразумевает абсолютные движение и покой. Таким образом, в приведенной формулировке закона инерции следует иметь в виду движение и покой, отнесенные к абсолютному пространству.

Эйлер неоднократно обращался к вопросу об источнике сил и считал, что таким источником является движение непроницаемых инертных тел. Основой динамики Эйлера служит теорема: «Сила q на точку b имеет то же действие, какое сила р имеет на точку а, если

q/p=b/a

«Это предложение, — указывает далее Эйлер, — заключает в себе основы для измерения силы инерции, так как на нем основывается все учение о том, как нужно учитывать материю или массу тел в механике. Следует обращать внимание на число точек, составляющих тело, которое должно быть приведено в движение, и масса тела должна быть принята пропорциональной этому числу. Эти точки надо считать равными между собой, но не так, что они равно малы, но так, что на них одна и та же сила производит равные действия. Если мы представим себе, что вся материя мира разделена на подобного рода равные точки или элементы, то количество материи по необходимости надо будет измерять числом точек, из которых оно составлено. В следующем предложении я покажу, что сила инерции пропорциональна этому числу точек или количеству материи».

Действительно, несколько ниже Эйлер формулирует предложение: «Силы инерции каждого тела пропорциональны количеству материи, из которой оно со стоит». Эйлер раскрывает знаменитое ньютоновское определение массы, вскрывает его атомистическую сущность и, подобно Ньютону, поясняет далее, что масса может быть измерена пропорциональным ей весом.

Когда Эйлер в приведенном выше основном предложении о пропорциональности сил массам употребляет выражение «точка b», «точка а», то это означает: «точка массы b», «точка массы а».(«Точка массы а», очевидно, тело малых размеров, составленное из простых точек ) Само же предложение означает, что действия сил одинаковы, если силы пропорциональны массам.

В современных обозначениях предложение Эйлера записывают так:

F1/F2 = m1/m2 = a

где а - одинаковое действие силы на тело, т. е. ускорение. Отсюда:

F1/m1 = a, F2/ m2 = a,

или вообще:

F = ma.

В своей «Механике» Эйлер записывает основное уравнение динамики для прямолинейного движения в следующем виде:

dc=npdt/A где dc - дифференциал скорости, р -сила, А - масса, п - коэффициент пропорциональности.

Подчеркнем, что Эйлер знал векторный характер силы и принимал за ее направление ту прямую, «по которой она стремится двигать тело». В «Теории движения твердых тел» Эйлер выписывает уравнения движения тела, разлагая это движение на три прямолинейные составляющие по осям. Они в обозначениях Эйлера имеют вид:

где р, q, r - компоненты действующей силы по осям координат, А — масса точки, λ — коэффициент пропорциональности, определяемый выбором единиц.

Таким образом, Эйлер переформулировал основные понятия ньютоновской механики, придав им более ясную форму, сохранив, однако, сущность ньютоновских определений; выдвинул на центральное место второй, закон, сделав его стержнем всей механики и придав ему аналитическую форму. С помощью этого закона Эйлер в «Механике» рассматривает различные случаи движения свободной и несвободной точки.

В «Теории движения твердого тела» Эйлер развил механику вращательного движения, введя такие фундаментальные понятия, как главные оси, проходящие через центр инерции, по отношению к которым момент инерции имеет экстремальное значение. Свободную ось вращения Эйлер определяет как ось, которая не испытывает никакого силового воздействия при вращении тела вокруг нее.

Еще в 1758 г. Эйлер написал уравнения вращательного движения твердого тела, отнесенные к главным осям, в следующем виде:

где р, q, r - угловые скорости вращения относительно трех главных осей, жестко связанных с телом; А, В, С - главные моменты инерции; L, М, N - моменты сил, приложенных к телу, относительно тех же главных осей.

Как видим, Эйлер внес существенный вклад в развитие механики. Написанные им уравнения до cего времени «работают» в современных курсах.

В XVIII в. происходило не только преобразование методов ньютоновской механики. Этот век отмечен поисками общих принципов механики, эквивалентных законам Ньютона, или даже более общих, чем эти принципы. В результате этих поисков были открыты принципы возможных перемещений в статике, принцип Даламбера и принцип наименьшего действия Мопер-тюи — Эйлера в динамике.

Лагранж в своем труде «Аналитическая механика», излагая историю развития принципов статики, относит первые формулировки соотношений между силами, действующими в простых механизмах, и проходимыми путями к Гвидо убальдо и Галилею. Лагранж считает, что «древние, по-видимому, не знали этого закона». Однако у Герона Александрийского встречается «золотое правило механики» в виде утверждения: «Что выигрывается в силе, то теряется в скорости». Многие историки науки считают, что это правило было известно еще Аристотелю. Эмпирически это правило, несомненно, было знакомо людям, имеющим дело с простыми механизмами, очень давно.

Принцип возможных перемещений, который Лагранж называет принципом виртуальных скоростей, был сформулирован И.Бернулли в 1717 г. в письме к Вариньону и опубликован в «Новой механике» в 1725 г. Лагранж формулирует этот принцип следующим образом:

«Если какая-либо система любого числа тел или точек, на каждую из которых действуют любые силы, находится в равновесии и если этой системе сообщить любое малое движение, в результате которого каждая точка пройдет бесконечно малый путь, представляющий ее виртуальную скорость, то сумма сил, помноженных каждая соответственно на путь, проходимый по направлению силы точкой, к которой она приложена, будет всегда равна нулю, если малые пути, проходимые в направлении сил, считать положительными, а проходимые в противоположном направлении считать отрицательными».

Лагранж доказывал этот принцип, моделируя систему сил при помощи полиспастов и сводя действие этой системы к подъему или опусканию груза. Равновесие системы сил будет достигнуто тогда, когда при любом бесконечно малом перемещении точек системы груз не опускается. Лагранж указывал, что принцип виртуальных скоростей «дал повод для появления другого принципа, предложенного Мопертюи в 1740 г.».

История принципа П. Мопертюи также восходит к Герону, к утверждению о кратчайшем времени распространения света, которым Герои обосновал закон отражения.

Ферма применил этот принцип к преломлению света и вывел закон преломления, исходя из постулата: «Природа действует наиболее легкими и доступными путями». Свой вывод он изложил в письме к де ла Шамбру от 1 января 1662 г.

Иоганн Бернулли (1667—1748) сопоставил принцип ферма с предложенной им в 1696 г. вариационной механической задачей о линии быстрейшего ската тяжелой точки в поле тяжести (брахистохроне). Эту задачу Бернулли сформулировал так: «В вертикальной плоскости даны две точки Л и В. Определить путь АМВ, спускаясь по которому под влиянием собственной тяжести, тело М, начав двигаться из точки А, дойдет до другой точки В в кратчайшее время»

И в принципе ферма и в задаче о брахистохроне речь идет об отыскании минимального значения интеграла:

«...Мною, — писал И. Бернулли, — открыто удивительное совпадение между кривизной луча света в непрерывно меняющейся среде и нашей брахистохронной кривой». Так впервые была подмечена оптико-механическая аналогия, сыгравшая важную роль в истории физики.

Задача о брахистохроне явилась также началом разработки нового раздела математики — вариационного исчисления. В развитии этого раздела математики основополагающую роль сыграл Эйлер, издавший в 1744 г. книгу «Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопери-метрической задачи, взятой в самом широком смысле». Эйлер впервые применил термин «вариационное исчисление». Дальнейшее развитие вариационное исчисление получило в работах Лагранжа, который ввел символ варьирования 5 . Лагранж сообщил основные идеи своего метода в письме к Эйлеру еще в 1755 г. и опубликовал основополагающую статью по вариационному исчислению в 1762 г.

1 ... 38 39 40 41 42 43 44 45 46 ... 148
Перейти на страницу:
На этой странице вы можете бесплатно скачать Курс истории физики - Кудрявцев Степанович торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...