Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Научпоп » Приключения радиолуча - Валерий Родиков

Приключения радиолуча - Валерий Родиков

Читать онлайн Приключения радиолуча - Валерий Родиков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 37 38 39 40 41 42 43 44 45 ... 70
Перейти на страницу:

Ошибка другого рода — пропуск цели — тоже нежелательна. Цель есть, самолет или ракета летят, а сигнал, отраженный от них, не может превысить пороговый уровень. Почему так случилось? Причины тому могут быть разные. Например, в момент прихода сигнала так подобрались фазы, что шум подавил сигнал.

Поскольку мы имеем дело со случайными величинами: и шумом, и сигналом, то нельзя достоверно сказать, что если есть сигнал, то он обязательно превысит порог, а в его отсутствие превышения не произойдет. Мы можем говорить только о том, что эти события могут свершиться с некоторой вероятностью.

Конечно, и вероятность правильного обнаружения, и вероятность ложной тревоги зависят от порогового уровня. На вопрос, как его выбрать на все случаи жизни, единого ответа нет. Он определяется тем, что мы хотим или, говоря языком математики, тем, какой мы выбрали критерий. Можно, например, исходить из того, чтобы средний риск возможного от наших ошибок ущерба был минимален. Такой критерий называется байесовым. Есть еще критерии идеального наблюдателя, отношения правдоподобия и целый ряд других. Не будем в них углубляться — это уже область математической статистики, которая стала рабочим аппаратом проектировщиков радиосистем.

У разработчиков радаров наибольшей популярностью пользуется критерий Неймана-Пирсона. Выбранный согласно ему пороговый уровень при заданной вероятности ложной тревоги обеспечивает минимальную вероятность пропуска цели. Им пользоваться довольно удобно: не надо ломать голову, как оценить возможный ущерб от ошибок, не надо иметь предварительных данных о том, как часто появляются цели. Задаются только вероятностью ложной тревоги и ею определяется пороговый уровень, потом находят энергию сигнала, достаточную, чтобы он с требуемой вероятностью превысил порог, а остальное, как говорят, дело техники…

Сложные сигналы оказались незаменимы в такой области, как радиолокационная астрономия. Именно там нужны сигналы с большой энергией и высокой разрешающей способностью, чтобы разглядеть с помощью радара как можно больше подробностей о наших соседях по Солнечной системе.

В 60—70-х годах получены радиолокационные карты Луны, Венеры, Марса, Меркурия. Плотный облачный покров, скрывающий поверхность Венеры от оптических наблюдений, оказался прозрачным для радиоволн. Локация Венеры принесла поразительные открытия: Венера в отличие от своих собратьев по Солнечной системе вращается «наоборот», а длительность венерианских суток длиннее, чем ее год. Радиолокационные наблюдения Меркурия в 1964 году развеяли заблуждения астрономов относительно длительности его суток.

С 80-х годов прошлого века астрономы были убеждены, что Меркурий всегда обращен к Солнцу одной и той же стороной, как и Луна при своем вращении вокруг Земли, и что сутки на Меркурии равны году. То есть за один оборот вокруг Солнца, который длится 88 земных суток, Меркурий совершает один оборот вокруг своей оси. Но радиолокация Меркурия показала, что за один меркурианский год он совершает полтора оборота вокруг своей оси. Астрономы-оптики отказывались верить: «Не может быть, чтобы заблуждались три поколения астрономов?!»

В 1973 году приняты радиолокационные сигналы от колец Сатурна. Такое огромное расстояние радиоволна пробегает за 2,5 часа.

Одно из самых важных применений радиолокатора в астрономии выглядит довольно скромно: измерение астрономической единицы с невиданной для оптических замеров точностью (с точностью до одной десятимиллионной). Но астрономическая единица (расстояние от Земли до Солнца) — основной масштаб астрономии, а при планировании космических полетов к другим планетам необходима именно такая точность. Например, если бы при полете советской межпланетной станции «Венера-4», впервые опустившейся в атмосферу Венеры, было использовано прежнее значение астрономической единицы, то станция «промахнулась» бы и прошла мимо планеты на расстоянии трех ее радиусов.

Систематические радиолокационные наблюдения планет Солнечной системы используются учеными для разработки единой теории планет Солнечной системы, которая в десятки, сотни раз будет точнее, чем существующая классическая теория, созданная на основе оптических измерений. Такая теория необходима для решения задач навигации межпланетных аппаратов.

Сложные сигналы используются и для связи с космическими объектами. А расстояния до них в буквальном смысле астрономические. Именно благодаря сложным сигналам при малой мощности передатчика на борту космического аппарата удается выделить глубоко сокрытые шумами послания из космических далей. Американский космический аппарат «Вояджер-2» с расстояния около трех миллиардов километров передал снимки планеты Уран. Мощность передатчика на борту «Вояджера» была 20 ватт, в месте приема она уменьшилась в 1018, или в миллиард миллиардов раз. А впереди предстоят еще съемки планеты Нептун, к которой «Вояджер» подлетит в 1989 году.

Фантастична также чувствительность устройств, принимающих сигналы из космоса, — радиотелескопов. В 1965 году на одной из научных выставок посетителю предлагали взять лежащий на столе небольшой листок бумаги. Перевернув его, посетитель знакомился с таким текстом: «Взяв со стола этот листок бумаги, вы затратили больше энергии, чем та энергия, которую за всю историю астрономии приняли все существующие в мире радиотелескопы».

СО СТОРОНЫ ВИДНЕЕ…

Радиолокация сегодня — обширная область техники, которая впитывает в себя все достижения электроники. С помощью радиолокации мы можем заглянуть не только в глубины космоса, но и в глубь Земли.

Казалось бы, какая связь между одной из самых таинственных загадок древней цивилизации майя и радаром? Историков давно занимал вопрос: каким образом удавалось прокормиться двум-трем миллионам индейцев майя в болотистых джунглях нынешних Гватемалы и Белиза в Центральной Америке, на территории которых находилось государство майя. Ведь в таких условиях не могут расти никакие зерновые культуры.

Совершенно случайно ответ был найден с помощью радара. Специалисты НАСА разработали его для изучения поверхности Венеры, а испытания проводили над Гватемалой. Радар обнаружил под густым пологом тропической зелени обширную сеть ирригационных каналов, выкопанных примерно в VIII—IX веках нашей эры. Только в Гватемальских джунглях сокрыты от глаз тысячи километров дренажных каналов.

Сегодня услугами радара пользуются археологи, и довольно успешно. Радары видят засыпанные землей фундаменты древних зданий и поселений. Радиолокационные изображения, полученные со спутника или самолета, помогают антропологам. Ведь на них бывают видны исчезнувшие реки и озера, а древние предпочитали строиться ближе к воде.

Есть радары, измеряющие толщину льда, радары-метеорологи, радары-геологи, ищущие нефть и другие полезные ископаемые. Чтобы найти воду, не обязательно бурить скважину. Ее способен заменить все тот же радар. С помощью спутниковых и самолетных радаров создаются карты поверхностных вод, контролируется влажность почв, измеряется скорость ветра над морями и океанами, определяются границы районов вечной мерзлоты… Во льдах Антарктиды самолетные радары четко фиксируют метеориты поперечником всего лишь 15—20 сантиметров, ушедшие под лед на глубину нескольких десятков метров. В период вьетнамской войны американцы использовали радары для обнаружения подземных ходов партизан Южного Вьетнама.

Трудно перечислить всю ту информацию о Земле, которую можно получить и уже получают со спутников в радиоволновом диапазоне. Чтобы дать хоть какое-то представление о тех сведениях, прибегну к фантастическому приему. Попробуем представить себя на месте космонавта-инопланетянина, органы зрения которого воспринимают излучения нижней части СВЧ-диапазона. Тогда Земля не представлялась бы нам в таком виде, как нашим космонавтам, — голубой планетой, окутанной белыми облаками с зелеными вкраплениями полей и лесов, меняющей оттенки своей палитры с изменением погоды и солнечного освещения.

И днем и ночью мы видели бы стабильную картину, одинаковую и при облачной и при ясной погоде, и в полдень и в сумерках. Мы бы четко различали горы и поля, леса и пустыни, море и сушу, реки и озера, кварталы городов с их улицами и скверами… Вода — почвенная влага, болота, реки, озера, пресный и морской лед… — предстала бы перед нами во всем своем многообразии. Мы видели бы на несколько метров в глубь пустынь, находя под тысячелетним слоем песка следы высохших рек и погребенных городов, новые, неведомые нам прежде, детали подземного рельефа.

Затем, если бы могли перестроить свой «глаз» на более высокие частоты в СВЧ-диапазоне, то наблюдали еще и водяной пар, кислород, другие компоненты земной атмосферы. Мы бы увидели кухни погоды, как зарождаются и скользят по океанским просторам тайфуны. В общем, перед нашими глазами предстала бы «живая» метеорология…

1 ... 37 38 39 40 41 42 43 44 45 ... 70
Перейти на страницу:
На этой странице вы можете бесплатно скачать Приключения радиолуча - Валерий Родиков торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...