Категории
Самые читаемые книги
ЧитаемОнлайн » Документальные книги » Прочая документальная литература » От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио

От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио

Читать онлайн От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 77
Перейти на страницу:

Слабое место гипотезы Эддингтона состояло в том, что расчетная температура в центре Солнца была недостаточной, чтобы снабдить протоны необходимой энергией. В классической физике это означало бы смертный приговор для подобного сценария: частицы с недостаточной энергией не могли бы преодолеть барьер, и все тут. К счастью, на помощь пришла квантовая механика – теория, описывающая поведение субатомных частиц и света. Согласно квантовой механике, частицы могут вести себя как волны, и все процессы по сути своей вероятностны. У волны, в отличие от частицы, нет точного положения в пространстве, она в нем распространяется. Точно так же как некоторые океанские волны, бьющиеся о волнолом, перехлестывают через него, есть некоторая (небольшая) вероятность, что даже протоны, энергии у которых, по классическим представлениям, недостаточно, чтобы преодолеть кулоновский барьер, все равно будут взаимодействовать. Опираясь на квантово-механический эффект туннелирования[297], физик Георгий Гамов – и независимо от него две группы исследователей, одна под руководством Роберта Аткинсона и Фридриха Хоутерманса, другая – во главе с Эдвардом Кондоном и Рональдом Гарни – в конце 1920 годов показали, что при условиях, превалирующих в недрах звезд, протоны и в самом деле могут соединяться.

Первыми вывели, какие именно ядерные реакции обеспечивают слияние четырех атомов водорода в одно ядро гелия, физики Карл Фридрих фон Вайцзеккер в Германии и Ганс Бете и Чарльз Кричфилд в США. В замечательной статье, опубликованной в 1939 году[298], Бете рассказал о двух возможных способах производства энергии, при которых водород преобразуется в гелий. Первый называется протон-протонный цикл[299]: сначала два протона объединяются в дейтерий – изотоп водорода с одним протоном и одним нейтроном в ядре, – после чего они захватывают один дополнительный протон, и дейтерий превращается в изотоп гелия. Второй механизм, углеродно-азотный цикл, – это циклическая реакция, в ходе которой ядра углерода и азота играют роль исключительно катализаторов. В итоге опять же происходит слияние четырех протонов, которые формируют одно ядро гелия, и это сопровождается высвобождением энергии. Первоначально Бете полагал, что Солнце производит энергию главным образом через углеродно-азотный цикл, однако эксперименты в Радиационной лаборатории Келлога в Калифорнийском технологическом институте впоследствии показали, что в основном энергию Солнца обеспечивает протон-протонный цикл, а углеродно-азотный цикл доминирует в производстве энергии лишь в более массивных звездах.

Наверное, вы заметили, что само название углеродно-азотного цикла предполагает присутствие атомов углерода и азота в качестве катализаторов. Однако теория Бете не сумела показать, как именно сформировались во Вселенной эти самые углерод и азот, откуда они взялись. Бете размышлял над вероятностью, что углерод мог быть синтезирован из трех ядер гелия (ядро гелия состоит из двух протонов, а ядро углерода из шести). Однако, завершив расчеты, Бете сделал вывод, что «при нынешних условиях [то есть при плотностях и температурах, наблюдаемых в большинстве звезд, подобных Солнцу] нет никакой возможности постоянно производить в недрах звезд ядра тяжелее гелия»[300]. Поэтому вердикт Бете был таков: «Приходится признать, что более тяжелые [чем гелий] элементы были созданы до того, как звезды достигли нынешней температуры и плотности».

Вокруг этого заявления Бете разгорелись жаркие споры, поскольку астрономы и геофизики в то время полагали, что разные химические элементы по большей части должны иметь общее происхождение. В частности, тот факт, что атомы наподобие углерода, кислорода, азота и железа, судя по всему, распределены равномерно по всей галактике Млечный Путь, явно указывает на какой-то вселенский процесс формирования. Следовательно, чтобы принять вердикт Бете, физикам нужно было выяснить, в каком таком общем котле варились элементы до того, как звезды пришли в нынешнее равновесное состояние.

Казалось, теория завела в тупик и сейчас у всех опустятся руки, но тут неугомонный Георгий Гамов (которого друзья и коллеги звали Гео) и его студент Ральф Альфер высказали блистательную на первый взгляд мысль: что если элементы были созданы тогда, когда Вселенная пребывала в первоначальном состоянии и была очень плотной и горячей – то есть в момент Большого взрыва? Сама по себе концепция была до гениальности проста. В момент сверхплотного первичного фейерверка, по мнению Гамова и Альфера, вещество состояло из сильно сжатого нейтронного газа. Это первичное состояние они назвали илем – от древнегреческого yle и средневекового латинского hylem – «материя». Все эти нейтроны стали распадаться на протоны и электроны, и тогда и могли возникнуть все более тяжелые ядра – они последовательно захватывали по одному нейтрону из оставшегося океана нейтронов (а эти нейтроны впоследствии распадались на протоны, электроны и антинейтрино). Таким образом атомы, как предполагалось, стройными рядами двигались по таблице Менделеева, с каждым захваченным нейтроном взбираясь на ступеньку выше. Как предполагалось, весь этот процесс контролируется, с одной стороны, вероятностью, что конкретное ядро захватит еще один нейтрон, а с другой – расширением Вселенной (которое было открыто в конце 1920 годов, о чем мы поговорим в следующей главе). Космическое расширение вызвало общее уменьшение плотности материи со временем, а поэтому темпы ядерных реакций тоже снизились. Ральф Альфер, в то время аспирант Гамова, выполнил большую часть расчетов, и результаты были опубликованы[301] в номере «The Physical Review» за 1 апреля 1948 года (Гамов любил выпускать статьи в День дурака). Остроумец Гео подметил, что если он возьмет в соавторы статьи Ганса Бете (который на тот момент вообще не участвовал в его расчетах!), то три фамилии – Альфер, Бете, Гамов – будут соответствовать трем первым буквам греческого алфавита – альфа, бета, гамма. Бете согласился поставить свое имя, и эту статью часто так и называют – «алфавитная статья»[302]. В том же году Альфер в сотрудничестве с физиком Робертом Германом работал над расчетом температуры реликтового излучения, оставшегося после Большого взрыва, которое теперь называют космическим микроволновым фоновым излучением. Гео, который всю жизнь был страстным любителем каламбуров, в своей книге «Сотворение Вселенной» (G. Gamow. The Creation of the Universe) шутит, что Роберт Герман «упорно отказывался менять фамилию на Дельтер[303] [чтобы соответствовать четвертой букве греческого алфавита дельте]».

Хотя схема Альфера и Гамова была очень красива, вскоре стало очевидно, что хотя нуклеосинтез в раскаленном «эпицентре» Большого взрыва и вправду мог обеспечить относительно много изотопов водорода и гелия (а также немного лития и еле заметное количество бериллия и бора), когда речь заходила о создании еще более тяжелых элементов, возникала череда неразрешимых проблем. Их суть легко понять, если прибегнуть к простой механической метафоре: очень трудно взбираться по лестнице, когда не хватает некоторых ступеней. В природе нет стабильных изотопов с атомной массой 5 и 8. То есть стабильные изотопы гелия имеют атомную массу лишь 3 и 4, стабильные изотопы лития – 6 и 7, единственный по-настоящему стабильный изотоп бериллия имеет атомную массу 9 (а с атомной массой 10 он всего лишь долгоживущий) и т. д. Атомных масс 5 и 8 нет. Следовательно, гелий (атомная масса 4) не может захватить еще один нейтрон и создать ядро, которое оказалось бы достаточно долгоживущим, чтобы продолжить алгоритм захвата нейтрона. Такие же сложности возникают и у лития из-за пропуска на месте атомной массы 8. Пропуски в череде атомных масс досадным образом мешали прогрессу по алгоритму Гамова и Альфера. Даже великий физик Энрико Ферми[304], совместно с коллегой довольно подробно изучив эту проблему, с огорчением отметил, что синтез во время Большого взрыва «не может объяснить, как были сформированы элементы».

Вывод Ферми, что углерод и более тяжелые элементы не могли возникнуть во время Большого взрыва, в сочетании с утверждением Бете, что эти элементы не могут создаваться в звездах и в Солнце, привел к неразрешимой, казалось бы, загадке: как же синтезировались тяжелые элементы?

Именно в этот момент на сцену и вышел Фред Хойл.

И сказал Бог: да будет Хойл

Во второй половине 1944 года Хойл работал над военно-морскими радарами и по долгу службы оказался в США, где воспользовался случаем и познакомился в Маунт-Вильсоновской обсерватории с одним из самых авторитетных астрономов своего времени Вальтером Бааде. От Бааде Хойл узнал, насколько плотными и горячими могут стать ядра массивных звезд на поздних стадиях жизни. Изучив эти экстремальные условия, Хойл понял, что при температурах, приближающихся к миллиарду градусов, протоны и ядра гелия могут легко переходить кулоновский барьер других ядер, а в результате ядерные реакции и взаимообмен в обе стороны может происходить так часто, что весь ансамбль частиц приходит в состояние так называемого статистического равновесия.

1 ... 36 37 38 39 40 41 42 43 44 ... 77
Перейти на страницу:
На этой странице вы можете бесплатно скачать От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...