Категории
Самые читаемые книги

Физиология силы - Вячеслав Шляхтов

Читать онлайн Физиология силы - Вячеслав Шляхтов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 12
Перейти на страницу:

В зависимости от расположения ядер различают два типа интрафузальных мышечных волокон: с ядрами, сгруппированными в средней части веретена в виде сумки (ЯС-волокна), и с ядрами, расположенными цепочкой вдоль веретена (ЯЦ-волокна). Интрафузальные волокна обоих типов спиралевидно оплетены окончаниями афферентных нервных волокон, по которым и передается информация в спинной мозг. Чувствительность интрафузальных волокон регулируется гамма-мотонейронами, тела которых располагаются в передних рогах спинного мозга, а их длинные отростки (аксоны) иннервируют сами интрафузальные волокна.

Волокна типа ЯС функционально делятся на динамические и статические. Первые реагируют преимущественно на скорость изменения длины мышцы, вторые – на изменение длины вне зависимости от скорости ее изменения. Интрафузальные волокна типа ЯЦ являются статическими.

Рис. 1.6. Схема афферентных аппаратов мышц (Л.О. Бадалян, И.А. Скворцов, 1986)

1 – афферент 1b; 2 – афферент 1а; 3 – афферент II; 4 – альфа-мотонейрон; 5 – гамма-мотонейрон; 6 – нервно-мышечное веретено; 7 – сухожильный рецептор; 8 – экстрафузальное мышечное волокно; 9-10 – интрафузальные мышечные волокна с ядерной сумкой (9) и ядерной цепочкой (10)

Сухожильные рецепторы сигнализируют о степени напряжения мышцы при ее сокращении. Они располагаются в области соединения сухожилия и мышцы. Один конец рецептора прикрепляется к сухожилию, а другой – вплетается в интерстиций мышцы.

Рецептор имеет веретенообразную форму, а в его подкапсулярном пространстве располагаются чувствительные нервные окончания, реагирующие на сокращение мышцы. От сухожильного рецептора к спинному мозгу направляются афферентные нервные волокна 1b. При сокращении мышцы рецептор растягивается в продольном направлении и генерирует импульсы в спинной мозг. Чем больше напряжение мышцы, тем большая импульсация направляется в спинной мозг. Импульсы, идущие по 1b афферентам, оказывают влияние на мотонейроны собственной мышцы через полисинаптические цепи с участием тормозных нервных клеток.

Суставные рецепторы информируют о величине и скорости изменений суставного угла, а также о направлении движения в данном суставе. Суставные рецепторы находятся преимущественно в суставных сумках и связках. Они разделяются на медленно и быстро адаптирующиеся. Первые сигнализируют о суставном угле, т. е. о положении сустава. При увеличении угла частота афферентных импульсов возрастает. Быстро адаптирующиеся рецепторы информируют о скорости движения в суставе. При этом, чем больше скорость движения, тем чаще импульсация в афферентных нервных волокнах.

Механорецепторы кожи модифицируют временные и амплитудные характеристики проприоцептивных двигательных рефлексов и поэтому играют заметную роль в регуляции произвольных движений (Р.М. Городничев, 1987).

Произвольный контроль движений. Регуляция движений посредством рефлексов является простейшей формой управления целенаправленными двигательными действиями. Координация произвольных спортивных движений, т. е. осуществляемых при участии сознания спортсмена, базируется на активности высших центров головного мозга: коры, мозжечка, базальных ганглиев. Эти структуры мозга инициируют движение и корректируют его в ходе непосредственного выполнения.

Кора головного мозга. Разные корковые области определяют целесообразность двигательных действий, регулируют положение тела в пространстве, создают двигательные программы и корректируют их в различных ситуационных условиях, а также обеспечивают включение элементарных движений в сложные поведенческие реакции человека. Управляющие сигналы из коры головного мозга направляются по нисходящим нервным путям к мотонейронам спинного мозга.

Основные нисходящие тракты к мотонейронам спинного мозга начинаются в коре больших полушарий и стволе мозга. В зависимости от области серого вещества спинного мозга, которого они достигают, эти тракты (пути) разделяются на две группы – латеральные и медиальные. Латеральные тракты включают латеральный кортикоспинальный тракт, начинающийся в коре мозга, и руброспинальный тракт, начинающийся в красном ядре среднего мозга. Медиальные пути включают кортикоспинальный тракт, вестибулоспинальные тракты, ретикулоспинальные тракты и тектоспинальный тракт. Тракты называются по тем участкам мозга, с которого они начинаются и на каком из них заканчиваются.

Латеральные двигательные пути. Латеральный кортикоспинальный тракт начинается в моторной и премоторной областях коры больших полушарий. Его волокна оканчиваются на интернейронах и мотонейронах латеральной части спинного мозга, контролирующих дистальные мышцы, которые обеспечивают тонкие движения пальцев. Руброспинальный тракт начинается в красном ядре и заканчивается на интернейронах и мотонейронах, связанных с латеральной двигательной системой. Нейроны красного ядра имеют возбуждающие входы от моторной зоны коры и мозжечка. Предполагается, что руброспинальный путь дублирует ряд функций кортикоспинального тракта. После повреждения обоих латеральных двигательных путей значительно нарушается координация движений верхних и нижних конечностей.

Медиальные двигательные пути. Медиальные пути начинаются преимущественно в стволе мозга и направляют свои волокна к мотонейронам медиальной части спинного мозга, которые иннервируют проксимальную группу скелетных мышц. Аксоны нейронов вестибулоспинального тракта формируют возбуждающие моносинаптические входы на мотонейронах мышц-разгибателей, и активируемые через интернейроны спинного мозга тормозные входы на мышцы-сгибатели. Функция вестибулоспинального тракта состоит в регуляции положения тела в пространстве и активации мышц-разгибателей, противодействующих влиянию гравитации (силе тяжести). Ретикулоспинальные тракты обеспечивают двустороннее возбуждение медиальных мотонейронов разгибателей и торможение мотонейронов, регулирующих проксимальные конечности. Тектоспинальный тракт отвечает за движения головы и глаз, вызываемые зрительными и слуховыми раздражителями.

Кора головного мозга в реализации произвольных движений. Координация двигательной деятельности происходит при непосредственном участии нейрональных сетей коры головного мозга. Важное значение имеет активность нейронов первичной моторной коры – М1 и вторичной моторной коры, состоящей из премоторной зоны и дополнительной моторной зоны (рис. 1.7).

Рис. 1.7. Кора головного мозга

1 – лобная доля,

2 – дополнительная моторная кора,

3 – премоторная кора,

4 – первичная моторная кора,

5 – центральная борозда,

6 – сенсорная кора,

7 – теменная доля

Моторная кора организована соматотопически, т. е. активность определенного участка коры приводит к сокращению мышцы, располагающейся в строго определенной области тела (рис. 1.8). При этом мышцы в коре представлены не пропорционально: проекции мышц лица и рук более обширны по сравнению с мышцами туловища. Анализ мозга человека методом позитронно-эмиссионной томографии выявил, что активность нейрональных сетей моторной коры связана с выполняемыми движениями (Дж. Г. Николлс и др., 2008).

Рис 1.8. Представительство мышц в коре головного мозга

1 – глотательных, 2 – языка, 3 – челюстных, 4 – губ, 5 – лица, 6 – глазодвигательных, век, 7 – надбровья, 8 – шеи, 9 – большого пальца, 10 – указательного пальца, 11 – среднего пальца, 12 – безымянного пальца, 13 – мизинца, 14 – ладони, 15 – запястья, 16 – предплечья, 17 – плеча, 18 – туловища, 19 – бедра, 20 – голени, 20 – стоп, 21 – пальцев ног

Результаты регистрации нейрональной активности моторной коры показали строгую зависимость возможности генерации разрядов, их частотных характеристик, а также особенностей временных связей между разрядами активных нейронов от параметров выполняемого двигательного действия.

Оказалось, что часть кортикальных нейронов активна в процессе сгибания, другие же – в процессе разгибания. Одни нейроны активизировались в начале движения, а другие – при его завершении. Частота разрядов нейронов повышалась по мере возрастания мышечного усилия. Траектория движения в пространстве связана с максимальной частотой разрядов определенной группы кортикальных нейронов. Планирование и координация двигательных действий являются весьма сложными процессами, поэтому кроме коры головного мозга в регуляции движений существенное значение имеет активность и других мозговых структур, в частности – мозжечка.

Мозжечок. Функции мозжечка во многом определяются его связями с другими структурами нервной системы. Он обладает массивными проекциями от моторной коры и получает информацию от проприорецепторов, находящихся в мышцах и суставах, а также от рецепторов зрительной и вестибулярной сенсорных систем. Мозжечок участвует в регуляции равновесия и контроле положения тела. В специальных исследованиях была доказана роль мозжечка в инициации и исполнении планируемых двигательных действий.

1 2 3 4 5 6 7 8 9 10 ... 12
Перейти на страницу:
На этой странице вы можете бесплатно скачать Физиология силы - Вячеслав Шляхтов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉