Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Техническая литература » Битва за звезды-2. Космическое противостояние (часть II) - Антон Первушин

Битва за звезды-2. Космическое противостояние (часть II) - Антон Первушин

Читать онлайн Битва за звезды-2. Космическое противостояние (часть II) - Антон Первушин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 64
Перейти на страницу:

Принципиальная новизна разрабатываемого летатель ного аппарата, отсутствие проверенных технических реше ний по ряду направлений, а также необходимого набора конструкционных материалов и полуфабрикатов обуславливают необходимость поэтапной разработки и испытаний экспериментального воздушно-космического самолета. Поэтому вся программа по созданию экспериментального «Ту-2000» была разбита на два этапа: создание экспериментального гиперзвукового самолета «Ту-2000А» с максимальной скоростью полета до 5–6 Махов и создание экспериментального «ВКС» — прототипа одноступенчатого многоразового воздушно-космического самолета, обеспечивающего проведение летного эксперимента во всей области полетов, вплоть до выхода в космос.

Для воздушно-космического самолета «Ту-2000» была принята аэродинамическая схема «бесхвостка». Все элементы самолета конструктивно интегрированы вокруг силовой установки, состоящей из четырех ТРД, находящихся в хвостовой части, основного разгонного ШПВРД, расположенного под фюзеляжем в задней его части, и двух ЖРД для маневрирования в космическом пространстве, установленных между ТРД.

Самолет имеет треугольное крыло относительно небольшой площади и малого удлинения, большую роль в создании подъемной силы берет на себя фюзеляж с плоской нижней поверхностью.

Органы управления традиционные для данной схемы летательного аппарата элевоны на крыле и руль поворота на киле.

Основной двигатель — ШПВРД включает в себя воздухозаборник внешне-внутреннего сжатия, регулируемые камеры сгорания с косым срезом и многоканальную систему подачи топлива. Основной разгонный режим выполняется на ШПВРД. Воздушные каналы ТРД после достижения скорости 2–2,5 Маха и начала работы ШПВРД закрываются заслонками, которые в открытом состоянии образуют входное устройство воздухозаборника ТРД.

Фюзеляж самолета большого размера в основном занят топливными баками с жидким водородом.

В носовой части фюзеляжа расположена кабина экипажа на двух членов экипажа. Система автоматического спасения экипажа обеспечивает спасение от земли до максимальных высот. Носовая часть вместе с кабиной отделяемая и прорабатывалась в двух вариантах: с отделяемой и спасаемой на парашюте кабиной экипажа и катапультируемыми креслами самолетного типа.

На экспериментальном «Ту-2000А» будут использоваться катапультируемые кресла с предварительным отделением носовой части и кабины экипажа.

За кабиной экипажа находится технический отсек радиоэлектронного оборудования, в этот же отсек убирается передняя стойка шасси. Средняя и задняя части фюзеляжа заняты топливным баком с жидким водородом. Для питания ЖРД окислителем в хвостовой части фюзеляжа установлен кислородный бак. Все двигатели в качестве горючего используют жидкий водород из единой топливной системы.

Шасси «Ту-2000А» нормальной трехточечной схемы с носовым колесом: передняя стойка со спаренными колесами малого диметра с высоким давлением в пневматиках колес, основные стойки — одноколесные, убираются в фюзеляж в отсеки в районе крыла.

Габариты «Ту-2000А»: длина — 60 метров, размах крыла — 14 метров, стреловидность крыла по передней кромке — 70, масса пустого — 40 тонн, взлетная масса — от 70 до 90 тонн.

Экспериментальный «ВКС» второго этапа должен иметь взлетную массу до 210–280 тонн. Подобный аппарат сможет доставлять на околоземную орбиту 200–400 километров полезный груз от 6 до 10 тонн. Компоновочно он будет повторять экспериментальный «Ту-2000А», но на нем планируется устанавливать более мощный ШПВРД, число ТРД увеличить до шести.

На втором этапе, помимо многоразового воздушно-космического самолета, намечалось создать варианты космического бомбардировщика «Ту-2000Б» и пассажирского гиперзвукового самолета.

«Ту-2000Б» проектировался как двухместный бомбардировщик с дальностью 10 000 километров и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость в 6 Махов на высоте 30 километров.

До приостановки работ в 1992 году для «Ту-2000А» были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.

По утверждению специалистов, на сегодняшнем этапе весь объем научно-исследовательских и конструкторских работ по проекту можно выполнить за 13–15 лет с начала необходимого финансирования. Стоимость постройки одного «Ту-2000» (при затратах на опытно-конструкторские работы в 5,29 миллиарда долларов) составит около 480 миллионов долларов. Предполагаемая цена запуска — 13,6 миллиона долларов (при периодичности — 20 пусков в год).

Концепция «АЯКС»

В 1991 году мир узнал о новом прорывном проекте российских ученых.

Используя перспективные военные технологии, руководитель СКБ «Нева» ленинградского концерна «Ленинец» (ныне — Санкт-Петербургское Научно-исследовательское предприятие гиперзвуковых систем «Ленинец») Владимир Фрайштадт предложил оригинальную концепцию одноступенчатого аэро-космического самолета, получившую название «Аякс».

Согласно концепции «Аякс», гиперзвуковой летательный аппарат является открытой неизолированной аэротермодинамической системой, в которой на всех этапах атмосферного полета часть кинетической энергии обтекающего гиперзвукового воздушного потока ассимилируется бортовыми подсистемами, повышая общий ресурс аппарата и преобразуясь в химическую и электрическую энергии.

«Аякс» состоит из двух вложенных один в другой корпусов.

Между ними — специальный катализатор, куда поступает поток традиционного авиакеросина или более перспективного топлива — сжиженного метана. Когда аппарат совершает гиперзвуковой полет в атмосфере, то под влиянием высоких температур происходит термохимическое разложение углеводородного топлива. Процесс забирает большое количество энергии и охлаждает реактор. В результате термохимического разложения топлива выделяется свободный водород.

В смеси с тем же топливом он образует очень эффективное горючее для самолета.

Кроме того, часть обтекающего аппарат воздушного потока поступает в тракт уникального по своей концепции магнитоплазмохимического прямоточного воздушно-реактивного двигателя со сверхзвуковым горением. В этом двигателе находятся магнитогазодинамический (МГД) генератор и ускоритель. Первый создает мощное магнитное поле, в котором тормозится набегающий поток. Заторможенный и предварительно ионизированный поток воздуха поступает в камеру сгорания, куда подается обогащенное водородом топливо (керосин или метан). Истекающие продукты сгорания попадают в сопло, дополнительно разгоняются МГД-ускорителем и, расширяясь, выходят наружу. Таким образом, летящий в атмосфере аппарат сможет преобразовывать кинетическую энергию набегающего воздушного потока в широкий спектр различных видов энергии и использовать бортовой энергетический комплекс мощностью 100 МВт для самых различных задач планетарного характера.

И еще. На аппарате, созданном по концепции «Аякс», будет осуществляться управление обтеканием поверхности аппарата за счет воздействия направленного излучения бортового лазера и внешнего электромагнитного поля летательного аппарата на пограничный слой и скачки уплотнения ударных волн. Это позволит существенно снизить силу сопротивления воздушной среды.

Одноступенчатый воздушно-космический самолет «Нева»

На базе концепции «Аякс» сотрудниками Научно-исследовательского предприятия гиперзвуковых систем разработано целое семейство гиперзвуковых летательных аппаратов «Нева», предназначенных для транспортировки полезных грузов на дальние расстояния или на орбиту.

Среди них — многоцелевой гиперзвуковой самолет «Нева» для метеорологических и астрофизических исследований, геологической разведки, экологического контроля и даже для генерации озона; легкий административный аппарата «Нева»; гиперзвуковые самолеты «Нева-М1», «Нева-М6», «НеваМ7» для транспортных операций; гиперзвуковой гражданский самолет «Нева-7А» для перевозки 77 пассажиров и 4 членов экипажа со скоростью 15000 км/час.

Характеристики многоцелевого гиперзвукового самолета «Нева»: взлетная масса — 200 тонн, масса полезной нагрузки — 10 тонн, максимальная скорость — 4000 м/с, максимальная высота — 36 километров, дальность — 10 000 километров.

Характеристики гиперзвукового транспортного самолета «Нева-М1»: взлетная масса — 390 тонн, масса полезной нагрузки — 10 тонн, максимальная скорость — 4600 м/с, максимальная высота — 36 километров, дальность — 12 000 километров.

Особый интерес для нас представляет воздушно-космический самолет «Нева». Его характеристики таковы: взлетная масса — 364 тонны, масса полезной нагрузки, выводимой на орбиту (высота орбиты — до 250 километров, наклонение — произвольное), — 3 тонны, масса подвесных топливных баков — 37 тонн, максимальная скорость полета на высоте 100 километров — 7500 м/с.

1 2 3 4 5 6 7 8 9 10 ... 64
Перейти на страницу:
На этой странице вы можете бесплатно скачать Битва за звезды-2. Космическое противостояние (часть II) - Антон Первушин торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...