Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер

Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер

Читать онлайн Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 56
Перейти на страницу:

Поначалу на его мысль никто особого внимания не обратил. Прошло больше года, прежде чем о ней снова зашла речь. Когда Голд изложил её вторично, Бонди с усмешкой сказал: «К завтрашнему дню от неё камня на камне не останется». Однако, к своему удивлению, он обнаружил, что с математической точки зрения несоответствий нет и идея вполне разумна. Правда, Бонди и Хойл были убеждены, что всё равно ничего не выйдет, так как для поддержания Вселенной в устойчивом состоянии должно постоянно рождаться вещество, а это противоречит закону сохранения энергии. Голд возразил, что теория Большого взрыва тоже нарушает этот закон, но в долю секунды, а не в течение миллиардов лет, как то следует из теории устойчивого состояния.

К удивлению Бонди и Голда, Хойл начал работать над математической стороной теории самостоятельно. Особенно удивлялся Бонди, который считал, что Хойлу не хватит знаний математики, чтобы справиться с поставленной задачей. Но тому удалось применить общую теорию относительности, а затем и ввести придуманные им «c-числа» (описывающие создание нового вещества). К началу 1948 года статья была готова к публикации, что весьма встревожило Бонди и Голда, ведь первоначальная идея была предложена Голдом, а Бонди отнюдь не был уверен в справедливости математических построений Хойла. Вообще, Голда и Бонди занимала скорее философская сторона теории, а Хойла интересовали чисто математические следствия.

Когда Голд и Бонди узнали, что Хойл готов опубликовать свою статью, они взялись за работу всерьёз. Но чтобы напечататься, нужны какие-то осязаемые результаты. Однажды, когда Бонди в очередной раз колдовал над цифрами, он заметил, что небольшое изменение постоянной Хаббла прекрасно согласуется с идеей устойчивого состояния. Он тут же бросился к телефону и сообщил о своей находке Голду, который воскликнул: «Это нам и нужно!». Вскоре статья была готова.

Тем временем Хойл закончил свою статью и отправил её в Лондонское физическое общество. Он был уверен, что опередит коллег с публикацией. Однако, к его удивлению, статья была отвергнута, правда, с предложением представить её в Королевское 156 астрономическое общество. Хойла это никак не устраивало, поскольку на публикацию там уходило до полутора лет. Не желая терять столько времени, он послал статью в американский журнал «Physical Review». Примерно через месяц Хойл получил ответ, что статья может быть напечатана, если он сократит её наполовину. Хойл очень расстроился, так как полагал, что такое сокращение безнадёжно испортит статью, и был вынужден отправить её в Королевское астрономическое общество.

К этому времени там уже лежала статья Бонди и Голда, и Бонди, хорошо знакомый с президентом Королевского астрономического общества, договорился о её публикации в кратчайшие сроки. Он также уговорил президента напечатать статью Хойла вскоре после их работы.

Одной из основных трудностей теории устойчивого состояния является образование вещества в расширяющейся Вселенной. Откуда и как во Вселенной внезапно появляется вещество? Образование вещества означает, что Вселенная, т.е. галактики, по сути, постоянно рециклируются, а значит, они должны иметь различный возраст. Некоторые галактики должны быть очень старыми. По теории же Большого взрыва, все галактики появились примерно в одно и то же время (в среднем около 15 миллиардов лет назад).

Согласно темпам образования вещества, средний возраст галактик в теории устойчивого состояния должен составлять около одной трети возраста Хаббла – 6 миллиардов лет. Известно, или по крайней мере принято считать, что нашей Галактике примерно 12-15 миллиардов лет, это не противоречит теории устойчивого состояния. Однако при изучении окружающих нас галактик оказывается, что все они примерно одного возраста; галактик, которые были бы значительно старше, определённо нет, как, по-видимому, нет и галактик моложе 6 миллиардов лет.

Таков был первый аргумент против теории устойчивого состояния. Затем, в 60-е годы обнаружились и другие. Так, астрономы установили, что на далёких окраинах Вселенной в избытке имеются радиогалактики. Поскольку чем дальше смотришь вглубь, тем дальше удаляешься в прошлое, это, должно быть, свидетельствует об эволюции и соответствует теории Большого взрыва, а не теории устойчивого состояния. Сначала эти аргументы не отличались особой убедительностью, и Хойл отстаивал свои взгляды. Но затем у самого горизонта Вселенной были обнаружены квазары, и стало ясно, что теория устойчивого состояния обречена. Окончательный удар был нанесён ей в 1965 году, когда обнаружили микроволновое реликтовое излучение, дошедшее до нас со времён Большого взрыва, причём его температура совпадала с теоретическими расчётами.

Хойл с присоединившимся к нему Дж. Нарликером не сдавались и, пытаясь спасти свою теорию, вводили одну модификацию за другой, однако вскоре у них почти не осталось сторонников. Простота, поначалу свойственная теории, исчезла, но Хойл продолжал её отстаивать. В середине 70-х годов он предложил ещё одну модификацию, основанную на принципе Маха. Это странная и запутанная теория, в которой Вселенная разделена на «отсеки». Хойл утверждал, что никакого взрыва не было, а нам лишь кажется, что он был, так как мы наблюдаем объекты такими, какими они были много лет назад. По мнению Хойла, массы элементарных частиц раньше были гораздо меньше, чем сейчас, и чем дальше заглядывать в глубь Вселенной, тем больше падает масса, пока не наступает конец нашего «отсека». Он и представляется нам Большим взрывом, хотя, по мнению Хойла, это всего лишь то место, где масса становится равной нулю. Он также полагает, что по мере падения массы уменьшается и размер частиц.

Конечно, Хойлу оставалось ещё объяснить, откуда взялось космическое реликтовое излучение, что он и сделал. Он предположил, что это – свет звёзд, дошедший до нас от одной из других вселенных, т.е. из другого «отсека». Общая теория относительности, как уверяет Хойл, становится непригодной только далеко от границы, а поскольку она справедлива, мы должны быть весьма близко к границе «отсека».

Космологии с изменяющейся величиной G и космическими числами

На Хойла и его коллег, занимавшихся разработкой теории устойчивого состояния, сильное влияние оказала статья, написанная несколько раньше Полем Дираком. Дирак показал, что некоторые безразмерные отношения фундаментальных констант равны 10-40. Он предположил, что это должно иметь какое-то значение, но чтобы сохранить статус-кво, Дираку пришлось ввести изменяющуюся гравитационную постоянную G.

Некоторые из так называемых космических чисел на самом деле были введены задолго до Дирака. Эддингтона в конце жизни зачаровали аналогичные соотношения, на их базе он построил единую теорию, которую назвал фундаментальной (вкратце о ней речь шла раньше). Большинство учёных считает теперь, что Эддингтон дал маху, а вот работу Дирака по-прежнему воспринимают всерьёз.

Дирак закончил Бристольский университет в 1925 году со степенью бакалавра по электротехнике. Получив диплом, он усомнился в том, что способен стать инженером-электриком, и в том, правильно ли он выбрал профессию. Поняв ошибку, он вновь поступил в колледж, на этот раз Сент-Джон в Кембридже, где стал изучать математику. Однако вскоре он заинтересовался физикой и узнал о крупных открытиях в области квантовой теории, которые совершались тогда в Европе; квантовая теория полностью захватила его. Плод этого увлечения Дирака – независимая формулировка квантовой механики, которая позволила пролить свет на две, казалось бы, различные теории, предложенные ранее. Дирак показал, что на самом деле это две разновидности одной и той же теории. Позднее он вспоминал это время как самое интересное в своей жизни.

В 1937 году Дирак начал работать над космическими числами. (Говорят, что первую статью на эту тему он написал в медовый месяц.) Эти числа представляют собой безразмерные отношения фундаментальных констант, таких как заряд электрона e, постоянная Планка h, гравитационная постоянная G и скорость света c. Одно их множество, связанное с микромиром, называется No.1, другое, связанное с макромиром, No.2. Поразительно, что отношения чисел в No.1 и No.2 имеют порядок 1040.

Естественно, тут же возникает вопрос: что это – совпадение или нечто большее? Иногда кажется, что здесь есть какой-то смысл и открывается связь между микро- и макромиром, а значит, между общей теорией относительности и квантовой механикой.

Но прежде всего нужно убедиться в том, что константы действительно неизменны. В некоторые из них входит величина L, связанная с размером Вселенной, a L должно меняться, поскольку, как известно, Вселенная расширяется. Дирак был убеждён, что истинной константой является число 1040, а так как L меняется, то, чтобы это число осталось неизменным, должно соответственно меняться что-то ещё. Он предположил, что изменяется гравитационная постоянная G. Исходя из этого, он сформулировал свою космологию, но вскоре обнаружилось, что она противоречит наблюдениям и от неё пришлось отказаться.

1 ... 35 36 37 38 39 40 41 42 43 ... 56
Перейти на страницу:
На этой странице вы можете бесплатно скачать Мечта Эйнштейна. В поисках единой теории строения - Барри Паркер торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...