Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Занимательная физика. Книга 2 - Яков Перельман

Занимательная физика. Книга 2 - Яков Перельман

Читать онлайн Занимательная физика. Книга 2 - Яков Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 53
Перейти на страницу:

Так осуществляются в природе и военной технике мечты народных сказок о шапке-невидимке.

Человеческий глаз под водой

Вообразите, что вам дана возможность оставаться под водой сколь угодно долго и что вы при этом держите глаза открытыми. Могли бы вы там видеть?

Казалось бы, раз вода прозрачна, ничто не должно мешать видеть под водой так же хорошо, как и в воздухе. Вспомните, однако, о слепоте «невидимого человека», который не в состоянии видеть потому, что показатели преломления его глаза и воздуха одинаковы. Под водой мы находимся приблизительно в тех же условиях, как и «невидимка» в воздухе. Обратимся к цифрам, — дело станет яснее. Показатель преломления воды — 1,34. А вот показатели преломления прозрачных сред человеческого глаза:

Роговой оболочки и стекловидного тела 1,34

Хрусталика 1,43

Водянистой влаги 1,34

Вы видите, что преломляющая способность хрусталика всего на 0,1 сильнее, чем у воды, у остальных же частей нашего глаза она одинакова с преломляемостью воды. Поэтому под водой фокус лучей получается в глазу человека далеко позади сетчатой оболочки; следовательно, на самой сетчатке изображение должно вырисовываться смутно, различить что-либо можно лишь с трудом. Только очень близорукие люди видят под водой более или менее нормально.

Если хотите наглядно представить себе, как должны рисоваться нам вещи под водой, наденьте очки с сильно рассеивающими (двояковогнутыми) стеклами; тогда фокус лучей, преломляющихся в глазу, отодвинется далеко за сетчатку, и окружающее предстанет перед вами в неясных, туманных образах.

Не может ли человек под водой помочь своему зрению, пользуясь сильно преломляющими стеклами?

Обыкновенные стекла, употребляемые для очков, здесь мало пригодны: показатель преломления простого стекла 1,5, т. е. лишь немногим больше, чем у воды (1,34); такие очки будут преломлять под водой очень слабо. Нужны стекла особого сорта, отличающиеся чрезвычайно сильной преломляющей способностью (так называемый «тяжелый флинтглас» имеет показатель преломления, почти равный двум). С такими очками мы могли бы более или менее отчетливо видеть под водой (о специальных очках для ныряющих смотри далее).

Рисунок 110. Разрез через глаз рыбы. Хрусталик имеет шарообразную форму и не изменяет ее при аккомодации. Вместо изменения формы изменяется положение хрусталика в глазу, как показано пунктирными линиями.

Теперь понятно, почему у рыб хрусталик имеет чрезвычайно выпуклую форму; он шарообразен, и показатель его преломления — самый большой из всех, какие нам известны в глазах животных. Не будь этого, глаза были бы почти бесполезны рыбам, обреченным на жизнь в сильно преломляющей прозрачной среде.

Как видят водолазы?

Многие, вероятно, спросят: как же могут водолазы, работающие в своих скафандрах, видеть что-либо под водой, если глаза наши в воде почти не преломляют лучей света? Ведь водолазные шлемы всегда снабжаются плоскими, а не выпуклыми стеклами… Далее, могли ли пассажиры жюль-вернова «Наутилуса» любоваться через окно своей подводной каюты ландшафтом подводного мира?

Перед нами новый вопрос, на который, впрочем, нетрудно ответить. Ответ станет ясен, если принять во внимание, что, когда мы находимся под водой без водолазного костюма, вода непосредственно прилегает к нашему глазу; в водолазном же шлеме (или в каюте «Наутилуса») глаз отделен от воды слоем воздуха (и стекла). Это существенно меняет все дело. Лучи света, выходя из воды и пройдя через стекло, попадают сначала в воздух и лишь отсюда проникают в глаз. Падая из воды на плоскопараллельное стекло под каким-либо углом, лучи, по законам оптики, выходят из стекла, не меняя направления; но далее, при переходе из воздуха в глаз, лучи, конечно, преломляются, — и глаз при этих условиях действует совершенно так же, как и на суше. В этом и кроется разгадка смутившего нас противоречия. Лучшая иллюстрация ее — это то, что мы вполне хорошо видим рыб, плавающих в аквариуме.

Стеклянные чечевицы под водой

Пробовали ли вы делать такой простой опыт: погрузить двояковыпуклое («увеличительное») стекло в воду и рассматривать через него погруженные предметы? Попробуйте, — вас поразит неожиданность: увеличительное стекло в воде почти не увеличивает! Погрузите в воду «уменьшительное» (двояковогнутое) стекло, — и окажется, что, оно почти утратит свойство уменьшать. Если вы проделаете опыт не с водой, а с растительным маслом (например, кедровым), имеющим показатель преломления больший, чем стекло, то двояковыпуклое стекло будет уменьшать предметы, двояковогнутое — увеличивать их!

Вспомните, однако, закон преломления лучей света, — и эти чудеса не будут удивлять вас своей необычайностью. Двояковыпуклая чечевица увеличивает в воздухе потому, что стекло преломляет свет сильнее, нежели окружающий ее воздух. Но между преломляющей способностью стекла и воды разница невелика; поэтому если вы поместите стеклянную чечевицу в воду, то лучи света, переходя из воды в стекло, не испытают большого отклонения. Оттого-то под водой увеличительное стекло гораздо слабее увеличивает, чем в воздухе, а уменьшительное — слабее уменьшает.

Растительное же масло преломляет лучи сильнее, чем стекло, и потому в этой жидкости «увеличительные» стекла уменьшают, а «уменьшительные» увеличивают. Так же действуют под водой и пустые (вернее, воздушные) линзы: вогнутые увеличивают, выпуклые — уменьшают. Очки для ныряния представляют собою именно такие полые линзы (рис. 111).

Рисунок 111. Очки для ныряющих состоят из полых плоско-вогнутых линз. Луч MN, преломляясь, следует по пути MNOP, удаляясь внутри линзы от перпендикуляра падения и приближаясь к нему (т. е., к OR) вне линзы. Поэтому линза действует как собирательное стекло.

Неопытные купальщики

Неопытные купальщики нередко подвергаются большой опасности только потому, что забывают об одном любопытном следствии закона преломления света: они не знают, что преломление словно поднимает все погруженные в воду предметы выше истинного их положения. Дно пруда, речки, каждого водоема представляется глазу приподнятым почти на третью часть глубины; полагаясь на эту обманчивую мелкость, люди нередко попадают в опасное положение. Особенно важно знать это детям и вообще людям невысокого роста, для которых ошибка в определении глубины может оказаться роковой.

Причина — преломление световых лучей. Тот же оптический закон, который придает полупогруженной в воду ложке изломанный вид (рис. 112), обусловливает и кажущееся поднятие дна. Вы можете проверить это.

Посадите товарища за стол так, чтобы он не мог видеть дна стоящей перед ним чашки. На дно ее положите монету, которая, разумеется, будет заслонена стенкой чашки от глаз вашего товарища. Теперь попросите товарища не поворачивать головы и налейте в чашку воды. Произойдет нечто неожиданное: монета сделается для вашего гостя видимой! Удалите воду из чашки спринцовкой, — и дно с монетой опять опустится (рис. 113).

Рис. 114 объясняет, как это происходит. Участок дна m кажется наблюдателю (глаз которого — над водой, в точке A) в приподнятом положении: лучи преломляются и, переходя из воды в воздух, вступают в глаз, как показано на рисунке, а глаз видит участок на продолжении этих линий, т. е. над m. Чем наклоннее идут лучи, тем выше поднимается m. Вот почему при рассматривании, например, с лодки ровного дна пруда нам всегда кажется, что оно наиболее глубоко прямо под нами, а кругом — всё мельче и мельче.

Итак, дно пруда кажется нам вогнутым. Наоборот, если бы мы могли со дна пруда смотреть на перекинутый через него мост, он казался бы нам выпуклым (как изображено на рис. 115; о способе получения этой фотографии будет сказано позже). В данном случае лучи переходят из слабо преломляющей среды (воздуха) в сильно преломляющую (воду), поэтому и эффект получается обратный, чем при переходе лучей из воды в воздух. По сходной причине и ряд людей, стоящих, например, возле аквариума, должен казаться рыбам не прямой шеренгой, а дугой, обращенной своей выпуклостью к рыбе. О том, как видят рыбы, или, вернее, как они должны были бы видеть, если бы имели человеческие глаза, мы скоро побеседуем подробнее.

Рисунок 112. Искаженное изображение ложки, опущенной в стакан с водой.

Рисунок 113. Опыт с монетой в чашке.

Рисунок 114. Почему монета в опыте рис 113 кажется приподнявшейся.

Рисунок 115. В таком виде представляется подводному наблюдателю железнодорожный мост, перекинутый через pекy (с фотографии проф. Вуда).

Невидимая булавка

Воткните булавку в плоский пробковый кружок и положите его булавкой вниз на поверхность воды в миске. Если пробка не чересчур широка, то, как бы ни наклоняли вы голову, вам не удастся увидеть булавки — хотя казалось бы, она достаточно длинна, чтобы пробка не заслоняла ее от вас (рис. 116).

1 ... 35 36 37 38 39 40 41 42 43 ... 53
Перейти на страницу:
На этой странице вы можете бесплатно скачать Занимательная физика. Книга 2 - Яков Перельман торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...