Большая Советская Энциклопедия (УС) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Д. Н. Зубарев.
Устойчивость транспортных машин
Усто'йчивость тра'нспортных маши'н, способность машин противостоять внешним силам, вызывающим отклонение от заданного направления движения или положения равновесия (крен , дифферент, тангаж и др.), и возвращаться к исходному режиму движения (положению равновесия) после прекращения действия этих сил. Устойчивость колёсных (гусеничных) машин определяется колёсной базой , колеей колёс , расположением центра тяжести, сцеплением колёс с дорогой, профилем и состоянием дороги и др. параметрами (см. Автомобиль , Локомотив , Трактор ). Устойчивость летательных аппаратов обеспечивается вертикальным и горизонтальным оперением самолёта (вертолёта), элеронами крыла, управлением лопастей винтов вертолётов . Устойчивость судов называется остойчивостью и определяется формой корпуса, водоизмещением и положением метацентра .
Устойчивость упругих систем
Усто'йчивость упру'гих систе'м, свойство упругих систем возвращаться к состоянию равновесия после малых отклонений их из этого состояния. Понятие У. у. с. тесно связано с общим понятием устойчивости движения или равновесия. Устойчивость является необходимым условием для любой инженерной конструкции. Потеря устойчивости может явиться причиной разрушения как отдельного элемента конструкции, так и сооружения в целом. Потеря устойчивости при определённых видах нагружения характерна для различных гибких элементов, входящих в состав конструкции, – стержней (продольный изгиб), пластинок и оболочек (выпучивание).
До 2-й половины 19 в. единственным критерием прочности инженерных сооружений принималась величина действующих напряжений, т. е. считалось, что если напряжения не превосходят некоторого предела, зависящего от механических свойств материала, то сооружению не грозит опасность. Это было справедливо, пока строительными материалами служили камень, дерево, чугун и т.д., для которых, благодаря низким допускаемым напряжениям, случаи потери устойчивости были весьма редки. С появлением конструкций, в состав которых входят длинные сжатые стержни, последовал ряд аварий, заставивших пересмотреть укоренившуюся точку зрения. Оказалось, что они произошли вследствие недостаточной устойчивости сжатых стержней. Так, например, в результате потери устойчивости под воздействием порывов ветра в 1940 рухнул Такомский висячий мост (США).
Физическим признаком устойчивости или неустойчивости формы равновесия служит поведение нагруженной упругой системы при её отклонении от рассматриваемого положения равновесия на некоторую малую величину. Если система, отклоненная от положения равновесия, возвращается в первоначальное положение после устранения причины, вызвавшей отклонение, то равновесие устойчиво. Если отклонение не исчезает, а продолжает расти, то равновесие неустойчиво. Нагрузка, при которой устойчивое равновесие переходит в неустойчивое, наз. критической нагрузкой, а состояние системы – критическим состоянием. Установление критических состояний и составляет основной предмет теории У. у. с.
Для прямого стержня , сжатого вдоль оси силой Р, значение критической силы Р кр определяется формулой Эйлера Р кр = p2 EI/ (ml )2 , где Е — модуль упругости материала, I — момент инерции поперечного сечения, l – длина стержня, m — коэффициент, зависящий от условий закрепления концов. В случае двух шарнирных опор, одна из которых является неподвижной, а вторая – подвижной, m = 1.
Для прямоугольной пластинки , сжатой в одном направлении, критическое напряжение равно dкр = K p2 D/b 2 h, где D = Eh 3 /12(1 - n)2 – т. н. цилиндрическая жёсткость, b и h – ширина и толщина пластинки, n – Пуассона коэффициент материала, К – коэффициент, зависящий от условий закрепления краев и от отношения между размерами пластинки.
В случае круговой цилиндрической оболочки , сжатой вдоль оси, можно установить т. н. верхнее критическое напряжение sкр. в. = ; h и R – толщина и радиус кривизны срединной поверхности оболочки. Несколько иную структуру имеют формулы для верхнгео критического напряжения при действии поперечного давления или скручивающих пар. Потеря устойчивости реальных оболочек во многих случаях происходит при меньшей нагрузке вследствие значительного влияния различных факторов, особенно начальных неправильностей формы.
Для сложных конструкций точное решение затруднено, поэтому прибегают к различным приближённым методам. Для многих из них пользуются энергетическим критерием устойчивости, в котором рассматривается характер изменения потенциальной энергии П системы при малом отклонении её от положения равновесия (для устойчивого равновесия П = min). При рассмотрении неконсервативных систем, например стержня, сжатого силой, наклон которой меняется в процессе выпучивания (следящая сила), применяется динамический критерий, заключающийся в определении малых колебаний нагруженной системы. Важное значение имеет исследование т. н. закритического поведения упругих систем. Оно требует решения нелинейных краевых задач. Для стержня закритическая деформация оказывается возможной лишь при его очень большой гибкости. Напротив, для тонких пластинок вполне возможны значительные прогибы в закритической стадии – при условии, что края пластинки подкреплены жёсткими стержнями (стрингерами). Для оболочек закритическая деформация связана обычно с прощёлкиванием и потерей несущей способности конструкции.
Приведённые выше данные относятся к случаю, когда потеря У. у. с. имеет место в пределах упругости материала. Для исследования У. у. с. за пределами упругости пользуются пластичности теорией . Если нагрузка, приводящая к потере устойчивости, динамическая, необходимо учитывать силы инерции элементов конструкции, отвечающие характерным перемещениям. Чем более быстрым является нагружение, тем более выраженной оказывается форма выпучивания. При ударных нагрузках исследуются волновые процессы передачи усилий в конструкции. Если материал конструкции находится в состоянии ползучести, для определения критических параметров пользуются соотношениями теории ползучести (см. Ползучесть ).
Лит.: Болотин В. В., Динамическая устойчивость упругих систем, М., 1956; его же, Неконсервативные задачи теории упругой устойчивости, М., 1961; Вольмир А. С., Устойчивость деформируемых систем, 2 изд.. М.. 1967: Ржаницын А. Р., Устойчивость равновесия упругих систем, М., 1955: Смирнов А. Ф., Устойчивость и колебания сооружений, М., 1958; Тимошенко С. П., Устойчивость упругих систем, пер. с англ., 2 изд., М., 1955; его же, Устойчивость стержней, пластин и оболочек, М., 1971; Вольмир А. С., Оболочки в потоке жидкости и газа. Задачи аэроупругости, М., 1976.
А. С. Вольмир.
Устойчивость электрической системы
Усто'йчивость электри'ческой систе'мы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы , связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями , отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д.