Педагогика и психология высшей школы - неизвестен Автор
Шрифт:
Интервал:
Закладка:
Наиболее емко смысл термина "технология обучения" передает следующее определение: технология обучения - это способ реализации содержания обучения, предусмотренного учебными программами, представляющий систему форм, методов и средств обучения, обеспечивающую наиболее эффективное достижение поставленных целей. Итак, в технологии обучения содержание, методы и средства обучения находятся во взаимосвязи и взаимообусловленности. Педагогическое мастерство преподавателя состоит в том, чтобы отобрать нужное содержание, применить оптимальные методы и средства обучения в соответствии с программой и поставленными педагогическими задачами. Процесс разработки конкретной педагогической технологии можно назвать процессом педагогического проектирования. Последовательность его шагов будет следующей:
выбор содержания обучения, предусмотренного учебным планом и учебными программами;
выбор приоритетных целей, на которые должен быть ориентирован преподаватель: какие профессиональные и личностные качества будут сформированы у студентов в процессе преподавания проектируемой дисциплины;
выбор технологии, ориентированной на совокупность целей или на одну приоритетную цель;
разработка технологии обучения.
Проектирование технологии обучения предполагает проектирование содержания дисциплины, форм организации учебного процесса, выбор методов и средств обучения. Схема 6.1 дает четкое представление о наборе содержательных, процессуальных и предметных характеристик, раскрывающих смысл понятия "технология обучения".
Приведенные схемы 6.2 и 6.3 представляют достаточно подробную классификацию методов и средств обучения. "Технология обучения" двухслойное понятие, в котором внутренний слой заключает вычлененное из соответствующей области науки содержание учебной дисциплины, а внешний слой - формы реализации содержания в учебном процессе.
2.1. Классификация технологий обучения
Как уже отмечалось, на сегодняшний день нет четко зафиксированной классификации технологий обучения, однако выделены две градации традиционная и инновационная - технологии обучения. А. Я. Савельев (НИИ высшего образования) предлагает следующую классификацию образовательных технологий:
по направленности действия (ученики, студенты, преподаватели и т.д.);
по целям обучения;
по предметной среде (гуманитарные, естественные, технические дисциплины и т.д.);
по применяемым техническим средствам (аудиовизуальные, компьютерные, видеокомпьютерные и т.д.);
по организации учебного процесса (индивидуальные, коллективные, смешанные);
по методической задаче (технология одного предмета, средства, метода).
В данном контексте, говоря о технологии обучения, авторы подразумевают технологию обучения студентов инженерного вуза, приводя в таблицах широкий спектр методов и средств обучения. Что касается разработки содержания дисциплины, выбора форм организации учебного процесса и форм контроля, то нагляднее всего эти стадии (шаги) педагогического проектирования продемонстрировать на примере модульного обучения.
3. Модульное построение содержания дисциплины и рейтинговый контроль
Очевидно, что содержание учебной дисциплины отличается от содержания соответствующей области науки и качественными и количественными параметрами. Для учебного курса отбираются базисные знания; прикладные аспекты курса разрабатываются с учетом специальности, т.е. курс профилируется; кроме того, выполняющий учебные задачи курс соответствующим образом структурируется.
Базисные знания: под базисом следует понимать совокупность основных наиболее крупных педагогических целей преподавания курса. Они составляют как бы своеобразное ядро, которое связывается в единое целое посредством методов преподавания, образующих тесно примыкающую к ядру оболочку. Базис в значительной мере переплетается с короной, состоящей как из значительных педагогических задач, наполняющих базисные элементы содержанием, так и из более мелких понятий, навыков, умений и т.д. Для удобства понимания принцип ядра можно продемонстрировать на примере физики (схема 6.4). В ядро базисных знаний по физике входят: понимание физической картины мира, навыки экспериментальных измерений, задел специальных знаний, необходимых для изучения общенаучных и специальных дисциплин. Оболочку представляют лекции, лабораторные работы и упражнения. Все элементы базиса инвариантны и должны присутствовать (хотя и в разной степени) в курсах для любого типа физического образования в вузах. Наиболее подвижны элементы короны. В зависимости от типа образованности и конкретной специализации часть этих элементов может быть изменена или отвергнута. В "корону" могут входить математические модели, методы их составления и исследования, неспецифические приемы решения задач, физические расчеты, методы измерений и обработки результатов. Ядро и корона наполняют оболочку конкретным содержанием.
Задача современных образовательных технологий - это усиление фундаментальной подготовки, дающей обучаемому умение выделить в конкретном предмете базисную инвариантную часть его содержания, которую после самостоятельного осмысления и реконструирования он сможет использовать на новом уровне, при изучении других дисциплин, при самообразовании. Для российского образовательного пространства характерна недостаточная интеграция, "замкнутость" отдельных дисциплин, мешающая приобретению системных знаний и фундаментализации образования. Блочное расположение курсов в учебных планах, введение междисциплинарных экзаменов способствуют усилению межпредметных связей, формированию системного подхода к обучению. При проектировании содержания дисциплины в последнее время наметилась тенденция выделять из базиса дисциплины ее понятийную базу - тезаурус, в котором должны быть представлены основные смысловые единицы. Их следует систематизировать по элементам научного знания и давать по разделам курса в виде перечней, отражающих вехи его содержания.
Для естественнонаучных дисциплин это должны быть:
термины;
понятия-явления, свойства, модели, величины;
приборы и устройства;
классические опыты.
Следует особо выделить математический аппарат, необходимый для описания механизмов протекания явлений.
Базис дисциплины, представленный в виде таких перечней, усваивается обучаемым как система знаний. Перечни способствуют объективизации методологического знания, делают его предметом осознанного усвоения. Наличие понятийной базы упрощает составление единых требований ко всем формам контроля и облегчает разработку требований к междисциплинарному экзамену. Понятие базисного содержания дисциплины неразрывно связано с понятием учебного модуля, в котором базисные содержательные блоки логически связаны в систему.
Модуль - логически завершенная часть учебного материала, обязательно сопровождаемая контролем знаний и умений студентов. Основой для формирования модулей служит рабочая программа дисциплины. Число модулей зависит как от особенностей самого предмета, так и от желаемой частоты контроля обучения. Модульное обучение неразрывно связано с рейтинговой системой контроля. Чем крупней или важней модуль, тем большее число баллов ему отводится. Контроль по модулям обычно производится 3-4 раза в семестр, в него входят зачет или экзамен по курсу.
Модуль содержит познавательную и учебно-профессиональную части. Первая формирует теоретические знания, вторая - профессиональные умения и навыки на основе приобретенных знаний. Соотношение теоретической и практической частей модуля должно быть оптимальным, что требует профессионализма и высокого педагогического мастерства преподавателя.
В основу модульной интерпретации учебного курса должен быть положен принцип системности, предполагающий:
системность содержания, т.е. то необходимое и достаточное знание (тезаурус), без наличия которого ни дисциплина в целом, ни любой из ее модулей не могут существовать;
чередование познавательной и учебно-профессиональной частей модуля, обеспечивающее алгоритм формирования познавательно-профессиональных умений и навыков;
системность контроля, логически завершающего каждый модуль, приводящая к формированию способностей обучаемых трансформировать приобретенные навыки систематизации в профессиональные умения анализировать, систематизировать и прогнозировать инженерные решения.
При модульной интерпретации учебной дисциплины следует установить число и наполняемость модулей, соотношение теоретической и практической частей в каждом из них, их очередность, содержание и формы модульного контроля, график выполнения проектного задания (если оно предусмотрено планом), содержание и формы итогового контроля.