Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Справочники » Справочник по проектированию электрических сетей - И. Карапетян

Справочник по проектированию электрических сетей - И. Карапетян

Читать онлайн Справочник по проектированию электрических сетей - И. Карапетян

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 51
Перейти на страницу:

Полная мощность гидрогенератора, как правило, не зависит от cos φ и равна номинальной, если гидрогенератор приспособлен для работы в режиме синхронного компенсатора (режим работы определяется при выполнении проекта ГЭС).

В аварийных режимах допускается перегрузка генератора по токам статора и ротора согласно техническим условиям. Если в технических условиях соответствующие указания отсутствуют, кратковременные перегрузки по току статора принимаются по табл. 5.4. Данные по допустимой перегрузке по току ротора генераторов с непосредственным охлаждением приведены в табл. 5.5. Допустимая перегрузка генераторов с косвенным охлаждением обмоток определяется допустимой перегрузкой статора.

Моменты инерции некоторых паровых турбин имеют следующие значения:

Моменты инерции гидротурбин составляют примерно 10 % момента инерции присоединенных к ним гидрогенераторов.

Таблица 5.1

Окончание табл. 5.1

Таблица 5.2

Таблица 5.3

Окончание табл. 5.3

Таблица 5.4

Таблица 5.5

5.1.2. Дизельные и газотурбинные электростанции. Парогазовые установки

По состоянию на начало 2010 г. в малой энергетике страны свыше 95 % действующих установок (единичной мощностью более 1 МВт) являются дизельными электростанциями (ДЭС). Широкое применение ДЭС определяется рядом их важных преимуществ перед другими типами электростанций:

высокий КПД (до 0,35—0,4) и, следовательно, малый удельный расход топлива (240–260 г/кВт ч);

быстрота пуска (единицы — десятки секунд), полная автоматизация всех технологических процессов, возможность длительной работы без технического обслуживания (до 250 ч и более);

малый удельный расход воды (или воздуха) для охлаждения двигателей;

компактность, простота вспомогательных систем и технологического процесса, позволяющие обходиться минимальным количеством обслуживающего персонала;

малая потребность в строительных объемах (1,5–2 м3/кВт), быстрота строительства здания станции и монтажа оборудования (степень заводской готовности 0,8–0,85);

возможность блочно-модульного исполнения электростанций, сводящая к минимуму строительные работы на месте применения.

Главными недостатками ДЭС являются высокая стоимость топлива и ограниченный по сравнению с электростанциями централизованных систем срок службы (ресурс).

Российская промышленность предлагает широкий выбор ДЭС во всем необходимом диапазоне мощностей и исполнений (табл. 5.6).

В последние годы получают все возрастающее использование ГТУ и газотурбинные электростанции (ГТЭС) малой мощности (2,5—25,0 МВт). ГТЭС характеризуются высокой заводской готовностью. В табл. 5.7 приведены основные технические характеристики ГТЭС, выпускаемых ЗАО «Искра-Энергетика» (г. Пермь).

Особенно эффективно использование ГТЭС для электроснабжения нефтяных и газовых месторождений.

Одним из основных направлений научно-технической политики в энергетике является широкое внедрение ПГУ. Применение ПГУ обеспечит повышение КПД энергоустановок с 30–35 % до 50–60 %, уменьшение воздействия на окружающую среду, снижение расхода топлива на производство электроэнергии на 25–35 %. Электростанции с ПГУ могут сооружаться за два года от начала строительства до ввода в действие. ПГУ характеризуются как малогабаритные электростанции и поэтому могут размещаться вблизи центров энергопотребления.

Намечается установка блоков ПГУ-450 с генераторами типа ТЗФГ-3×160 при расширении московских ТЭЦ.

Ввод в эксплуатацию Северо-Западной ТЭЦ с ПГУ-450Т (г. Санкт-Петербург) является новым этапом в развитии ПГУ в России. Основные компоненты парогазовых энергоблоков Северо-Западной ТЭЦ — газовые турбины мощностью 153,7 МВт типа V94,2 фирмы Siemens (изготавливаются на заводе фирмы и на ЛМЗ). Паровые турбины типа Т-160—7,7 поставляются ЛМЗ. Каждая из газовых и паровых турбин приводит в действие генератор типа ТФГ(П)-160—2УЗ производства ОАО «Электросила» (табл. 5.8).

Таблица 5.6

Таблица 5.7

Таблица 5.8

Окончание табл. 5.8

5.1.3. Ветроэнергетические электростанции (ВЭС)

ВЭС производит электричество за счет энергии перемещающихся воздушных масс (ветра) и состоит из мачты, на вершине которой размещается контейнер с генератором и редуктором. К оси редуктора ВЭС прикреплены лопасти.

Преимущество ВЭС в следующем:

не загрязняют окружающую среду вредными выбросами;

при определенных условиях могут конкурировать с невозобновляемыми энергоисточниками.

Вместе с тем ВЭС обладают недостатками, главные из которых следующие:

ветер от природы нестабилен, что затрудняет использование ветровой энергии из-за необходимости установки резерва в энергосистеме;

создают шумы, поэтому они строятся на таком расстоянии от зданий, чтобы уровень шума не превышал 35–40 дБ;

создают помехи телевидению и радиосигналам;

причиняют вред птицам, если размещаются на путях их миграции и гнездования.

Основную проблему использования ВЭС вызывает непостоянная природа ветра. При этом мощность электростанций в каждый момент времени переменна, что не обеспечивает стабильное поступление энергии от одной ВЭС. Поэтому ВЭС для равномерной и стабильной работы строятся с устройствами аккумулирования электроэнергии.

Основные производители ВЭС — компании Vestas, Nordex, Panasonic, Vergnet, Ecotecnia, Superwind.

На начало 2006 г. общая установленная мощность ВЭС в мире составила около 40 ГВт, в том числе в Германии — 17 ГВт. Использование ВЭС растет весьма высокими темпами. По оценке к 2012 г. суммарная установленная мощность ВЭС возрастет до 150 ГВт, а в ряде стран поступление электроэнергии от них составит 10–15 % приходной части баланса электроэнергии энергосистемы. По местоположению ВЭС различают наземные установки (он-шоры) и прибрежные — в море (офф-шоры). Наибольшее использование получили морские ветропарки (ветрофермы), на которых устанавливаются десятки ВЭС. Указанное определяется более благоприятным ветровым режимом, а также экологическими соображениями.

Наибольшее использование получили ВЭС с горизонтальной осью вращения и диаметром рабочего колеса до 30 м (табл. 5.9).

Разрабатываются ветроэнергетические установки (ВЭУ) с диаметром колеса 100 м и более. В США в 2005 г. началось строительство самого большого в мире ветропарка Cape Cod у побережья штата Массачусетс, который будет иметь установленную мощностью 468 МВт.

Таблица 5.9

В России построено и пущено в эксплуатацию несколько ВЭС общей мощностью более 15 МВт.

Некоторые данные действующих и строящихся ВЭУ России приведены в табл. 5.10.

Таблица 5.10

5.1.4. Геотермальные электростанции (ГеоТЭС)

Зона возможного строительства ГеоТЭС в России в основном ограничивается Камчаткой и Курилами. Потенциальная мощность ГеоТЭС составляет 1 млн кВт. Основными месторождениями являются Паужетское, Мутновское, Киреунское и Нижне-Кошелевское. Использование действующих ГеоТЭС в России характеризуют данные табл. 5.11.

Таблица 5.11

В мире функционируют ГеоТЭС общей установленной мощностью около 7,5 тыс. МВт. Подобные электростанции успешно работают в Индонезии и на Филиппинах. За последние 3–4 года в западной части США были введены ГеоТЭС общей мощностью 900 МВт, себестоимость электроэнергии — 0,06—0,07 долл./кВтч.

5.1.5. Энергия морских приливов

Строительство приливных электростанций (ПЭС) с турбинами нового типа является одним из направлений развития гидроэнергетики. ПЭС могут работать в любой зоне графика электрических нагрузок, не загрязняют атмосферу вредными выбросами и не имеют зоны затопления. Капитальные затраты на сооружение ПЭС соизмеримы с затратами на строительство ГЭС.

В России с 1968 г. эксплуатируется одна приливная электростанция — Кислогубская ПЭС (400 кВт).

Для малой Мезенской ПЭС изготовлен экспериментальный металлический энергоблок с диаметром рабочего колеса 5 м на вертикальном валу и проектной мощностью 1500 кВт. Отработанная конструкция и технология доставки и установки будут использованы при строительстве перспективных ПЭС: Северной (Мурманская обл.), Мезенской (Архангельская обл.), Тугурской (Хабаровский край).

1 ... 28 29 30 31 32 33 34 35 36 ... 51
Перейти на страницу:
На этой странице вы можете бесплатно скачать Справочник по проектированию электрических сетей - И. Карапетян торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...