Кризис аграрной цивилизации и генетически модифицированные организмы - Валерий Глазко
Шрифт:
Интервал:
Закладка:
Выделение альгината слизистыми штаммами Pseudomonas aeruginosa существенно повышает вязкость слизи у больных муковисцидозом. Чтобы очистить дыхательные пути и облегчить состояние больных, в дополнение к обработке ДНКазой следует провести деполимеризацию альгината с помощью альгинат-лиазы.
Ген альгинат-лиазы был выделен из Flavobacterium sp., грамотрицательной почвенной бактерии, активно вырабатывающей этот фермент. На основе E.coli был создан банк клонов Flavobacterium и проведен скрининг тех из них, которые синтезируют альгинат-лиазу, путем высевания всех клонов на твердую среду, содержащую альгинат, с добавлением ионов кальция. В таких условиях весь альгинат, находящийся в среде, за исключением того, который окружает продуцирующие альгинат-лиазу колонии, образует сшивки и становится мутным. Гидролизованный альгинат теряет способность к формированию сшивок, поэтому среда вокруг синтезирующих альгинат-лиазу колоний остается прозрачной. Анализ клонированного фрагмента ДНК, присутствующего в одной из положительных колоний, показал наличие открытой рамки считывания, кодирующей полипептид молекулярной массой около 69 000. Более детальные биохимические и генетические исследования показали, что этот полипептид, по-видимому, является предшественником трех альгинат-лиаз, вырабатываемых Flavobacterium sp. Сначала какой-то протеолитический фермент отрезает от него N-концевой пептид массой около 6000. Оставшийся белок молекулярной массой 63 000 способен деполимеризовать альгинат, вырабатываемый как бактериями, так и морскими водорослями. При его последующем разрезании образуется продукт молекулярной массой 23 000, деполимеризующий альгинат морских водорослей, и фермент молекулярной массой 40 000, разрушающий альгинат бактерий. Для получения больших количеств фермента молекулярной массой 40 000 кодирующую его ДНК амплифицировали методом полимеразной цепной реакции (ПЦР), а затем встраивали в выделенный из B.subrjlis плазмидный вектор, несущий ген, кодирующий сигнальный пептид а-амилазы B.subrjlis. Транскрипцию контролировали при помощи системы экспрессии гена пенициллиназы. При трансформации клеток B.subrjlis полученной плазмидой и высевании их на содержащую альгинат твердую среду с добавлением ионов кальция образовались колонии с большим ореолом. Когда такие колонии выращивали в жидкой среде, рекомбинантная альгинат-лиаза выделялась в культуральную среду. Последующие тесты показали, что этот фермент способен эффективно разжижать альгинаты, синтезируемые слизистыми штаммами P.aeruginosa, которые были выделены из легких больных муковисцидозом. Для того чтобы определить, целесообразно ли проводить клиническое тестирование рекомбинантной альгинат-лиазы, нужны дополнительные исследования.
Профилактика отторжения трансплантированных органов
В 1970-х гг. были пересмотрены взгляды на пассивную иммунизацию: ее стали считать профилактическим средством борьбы с отторжением трансплантированных органов. Предлагалось вводить пациентам специфические антитела, которые будут связываться с лимфоцитами определенного типа, уменьшая иммунный ответ, направленный против пересаженного органа.
Первыми веществами, рекомендованными Департаментом по контролю качества пищевых продуктов, медикаментов и косметических средств (США), для использования в качестве иммуносупрессоров при пересадке органов у человека, были моноклональные антитела мыши ОКТЗ. За отторжение органов отвечают так называемые Т-клетки — лимфоциты, дифференцирующиеся в тимусе. ОКТЗ связываются с рецептором, находящимся на поверхности любой Т-клетки, который называется CD3. Это предупреждает развитие полного иммунного ответа и отторжение трансплантированного органа. Подобная иммуносупрессия весьма эффективна, хотя и оказывает некоторые побочные действия, например, вызывает лихорадку и приводит к появлению сыпи.
Были разработаны приемы по производству антител с помощью E.coli. Гибридомы, подобно большинству других клеточных культур животных, растут относительно медленно, не достигают высокой плотности и требуют сложных и дорогих сред. Получаемые таким образом моноклональные антитела очень дороги, что не позволяет широко использовать их в клинике.
Чтобы решить эту проблему, были предприняты попытки создания своего рода «биореакторов» на основе генетически модифицированных бактерий, растений и животных. В этих целях в геном хозяина вводили генные конструкции, способные кодировать отдельные участки антител. Для эффективной доставки и функционирования некоторых иммунотерапевтических средств зачастую достаточно одной антигенcвязывающей области антитела (Fab- или Fv-фрагмента), т.е. присутствие Fc-фрагмента антитела необязательно.
ГМ растения — продуценты фармакологических препаратов
Сегодня все реальнее выглядят перспективы сельскохозяйственной биотехнологии предоставить такие растения, которые будут использоваться как лекарства или вакцины. Трудно даже представить, какое значение это может иметь для бедных стран, где обычные фармацевтические средства все еще в диковинку, а традиционные программы вакцинации по линии ВОЗ оказываются слишком дорогими и трудно выполнимыми. Это направление исследований необходимо всемерно поддерживать, в том числе и через сотрудничество государственного и частного секторов экономики.
Среди генов, экспрессия которых в растениях считается экзотической, наиболее важными являются гены, кодирующие синтез полипептидов, имеющих медицинское значение. Очевидно, первым выполненным исследованием в этой области следует считать патент фирмы Calgene об экспрессии интерферона мыши в клетках растений. Позже был показан синтез иммуноглобулинов в листьях растений.
Кроме этого, возможно введение в геном растения гена, кодирующего оболочечный белок (белки) какого-либо вируса. Потребляя растение в пищу, люди постепенно приобретут иммунитет к этому вирусу. По сути это — создание растений-лекарств.
Трансгенные растения обладают рядом преимуществ по сравнению с культурой клеток микроорганизмов, животных и человека для производства рекомбинантных белков. Среди преимуществ трансгенных растений отметим основные: возможность широкомасштабного получения, дешевизна, легкость очистки, отсутствие примесей, имеющих аллергенное, иммунносупрессивное, канцерогенное, тератогенное и прочие воздействия на человека. Растения могут синтезировать, гликозилировать и собирать из субъединиц белки млекопитающих. При поедании сырых овощей и фруктов, несущих гены, кодирующие синтез белков-вакцин, происходит оральная иммунизация.
Одним из путей уменьшения риска утечки генов в окружающую среду, применяемый, в частности, при создании съедобных вакцин, состоит во введении чужеродных генов в хлоропласты, а не в ядерные хромосомы, как обычно. Считается, что этот способ позволит расширить область применения ГМ растений. Несмотря на то, что ввести нужные гены в хлоропласты гораздо труднее, этот способ имеет ряд преимуществ. Одно из них заключается в том, что чужеродная ДНК из хлоропластов не может попасть в пыльцу. Это полностью исключает возможность неконтролируемого переноса ГМ материала.
Использование ДНК-технологий для разработки вакцин
Перспективным направлением является создание трансгенных растений, несущих гены белков, характерных для бактерий и вирусов, вызывающих инфекционные заболевания. При потреблении сырых плодов и овощей, несущих такие гены, или их сублимированных соков происходит вакцинация организма. Например, при введении гена нетоксичной субъединицы энтеротоксина холеры в растения картофеля и скармливании сырых клубней подопытным мышам в их организме образовывались антитела к возбудителям холеры. Очевидно, что такие съедобные вакцины могут стать эффективным простым и недорогим методом защиты людей и обеспечения безопасности питания в целом.
Развитие в последние десятилетия ДНК-технологий совершило революцию и в деле разработки и производства новых вакцин. При помощи методов молекулярной биологии и генетической инженерии были идентифицированы антигенные детерминанты многих инфекционных агентов, клонированы гены, кодирующие соответствующие белки и, в ряде случаев, налажено производство вакцин на основе белковых субъединиц этих антигенов. Диарея, вызываемая инфекцией холерным вибрионом или энтеротоксигенной кишечной палочкой (Escherichia coli), является одной из опаснейших болезней с высоким процентом летальных исходов, особенно у детей. Общее количество заболеваний холерой на земном шаре превышает 5 миллионов случаев ежегодно, в результате чего умирает около 200 тысяч человек. Поэтому Всемирная организация здравоохранения (ВОЗ) уделяет внимание профилактике заболевания диарейными инфекциями, всячески стимулируя создание разнообразных вакцин против этих заболеваний. Вспышки заболевания холерой встречаются и в нашей стране, особенно в южных регионах.