О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
Я собираюсь рассказать вам, как ведет себя Природа. И если вы просто согласитесь, что, возможно, она ведет себя именно таким образом, то вы увидите, что это очаровательная и восхитительная особа. Если сможете, не мучайте себя вопросом «Но как же так может быть?», ибо в противном случае вы зайдете в тупик, из которого еще никто не выбирался. Никто не знает, как же так может быть[53].
Случайное излучение
Ту революцию, которую совершили эти ученые, превосходно иллюстрируют мои попытки понять, как поведет себя уран в моей банке.
На долгих временных промежутках частота радиоактивного распада приближается к постоянной величине и в среднем вполне предсказуема, в точности как результаты бросков игральной кости. Но физика XX в. утверждает, что между костью и банкой урана есть фундаментальная разница. В случае игральной кости, по крайней мере, создается впечатление, что при наличии достаточного количества данных результат можно предсказать. А вот узнать, когда уран испустит следующую альфа-частицу, по-видимому, невозможно. И полнота информации не играет тут никакой роли. Согласно современной модели квантовой физики, это истинно случайный процесс. В нем можно увидеть пример, опровергающий лапласову концепцию Вселенной с часовым механизмом.
Откровения квантовой физики чрезвычайно неприятны для того, кто ищет определенности и точных знаний. Неужели ничего нельзя сделать, чтобы узнать, когда в банке, стоящей у меня на столе, появится следующая альфа-частица? Возмутительно! Совсем никак не узнать? Вопрос о том, действительно ли этот процесс совершенно случаен и познать его невозможно, или же существует какой-то скрытый, еще не обнаруженный нами механизм, который мог бы объяснить время возникновения излучения, все еще активно обсуждается.
Это неизвестное связано с еще более глубоким уровнем незнания, скрывающим от нас мир предельно малого. Чтобы применить открытые Ньютоном законы движения для вычисления будущего развития Вселенной, необходимо знать положение и импульс всех частиц этой Вселенной. Разумеется, на практике это невозможно, но сделанные в XX в. открытия заставляют думать, что тут существует и более фундаментальная проблема. Даже рассматривая всего один электрон, невозможно одновременно определить его положение и импульс. Наша современная модель предельно малого содержит встроенное ограничение того, что мы можем знать, – так называемый принцип неопределенности Гейзенберга.
Если на первом «рубеже» мы выяснили, что случайность, которую приписывают поведению игральной кости, обозначает всего лишь недостаточное знание, то мир предельно малого, по-видимому, основывается на подлинной случайности: на непознаваемой игральной кости, которая определяет, что случится с куском урана, соседствующим у меня на столе с костью из казино.
Я смирился с непознаваемостью броска игральной кости, поскольку в глубине души я уверен, что эта кость все-таки пляшет в регулярном ритме уравнений Ньютона. Но я не уверен, что когда-нибудь смогу согласиться с непознаваемостью банки радиоактивного урана, который, если верить теории, не танцует ни в чьем ритме. Останется ли его поведение непознаваемым, или же можно ожидать нового теоретического переворота, подобного тому, который открыл нам радикально новые перспективы в начале XX в.?
Волна или частица?
Первые намеки на такую революцию появились, когда ученые пытались понять природу света. Волна это или частица? В своем основополагающем труде по оптике, опубликованном в 1704 г., Ньютон предполагал, что свет имеет корпускулярную природу, то есть состоит из частиц. Если представить свет в виде потока частиц, то его поведение, описанное в книге Ньютона, кажется весьма естественным. Возьмем, например, отражение света. Если нужно узнать, куда будет направлен луч света, падающий на отражающую поверхность, то аналогия с бильярдным шаром, отскакивающим от стенки, позволяет предсказать его траекторию. Ньютон полагал, что такую прямолинейную геометрию световых лучей можно объяснить, только предположив, что свет состоит из частиц.
Однако противники точки зрения Ньютона считали, что природа света гораздо лучше описывается волновой моделью. Казалось, что многие из характеристик света трудно объяснить, если считать его частицей. Эксперимент, поставленный в начале XIX в. английским физиком Томасом Юнгом, по-видимому, забивал гвоздь в гроб представления света как частицы.
Если направить свет на экран, в котором прорезана одна узкая вертикальная щель, и поместить за экраном фотопластинку, способную регистрировать падающий на нее свет, на фотопластинке наблюдается следующая картина: прямо напротив щели и источника света имеется ярко освещенный участок, постепенно тускнеющий по мере удаления от центральной линии.
Пока что результаты опыта соответствуют представлению о корпускулярной природе света: при прохождении частиц сквозь щель могут случаться небольшие отклонения, в результате которых часть света попадает за пределы яркого участка. Правда, если ширина щели мала по сравнению с длиной волны света, то, даже когда такая щель всего одна, по мере удаления от ярко освещенного центрального участка можно наблюдать некоторые волнообразные колебания интенсивности, в которых можно видеть проявление волновой природы света.
Интенсивность света, зарегистрированного фотопластинкой после прохождения через одну узкую щель
Корпускулярная модель света оказалась в опасности, когда Юнг прорезал в экране вторую вертикальную щель, параллельную первой. Можно было бы ожидать появления двух ярко освещенных участков, расположенных один рядом с другим, каждый из которых соответствовал бы прохождению света через одну из щелей. Но Юнг наблюдал совсем иную картину. На фотопластинке появился ряд чередующихся светлых и темных линий. Как ни странно, некоторые участки пластинки были освещены, только когда была открыта одна щель, и оказывались затемнены после открытия второй. Если свет состоит из частиц, подобных бильярдным шарам, как же может быть, что, когда мы открываем ему новые пути для распространения, он оказывается не в состоянии достичь таких участков? Этот эксперимент породил серьезные сомнения в правоте ньютоновской корпускулярной модели света.
Казалось, что такие светлые и темные полосы может объяснить только волновая модель света. Если в неподвижную воду озера одновременно бросить два камня, то волны, порожденные падением камней, будут взаимодействовать так, что некоторые их части будут объединяться, образуя гораздо более сильные волны, а некоторые другие – гасить друг друга. Если пустить в воду деревянный брусок, такое взаимодействие можно увидеть по соударениям комбинированных волн с его гранью. По всей длине такой грани можно наблюдать последовательность гребней и впадин набегающей волны.
Свет, испускаемый с левой стороны, проходит через экран с двойной щелью и попадает на фотопластинку, установленную справа. Светлые и темные полосы за фотопластинкой иллюстрируют полученную интерференционную картину
Судя по всему, свет, выходящий из двух щелей, образует две волны, взаимодействие между которыми подобно взаимодействию волн, вызванных падением в воду двух камней. На некоторых участках волны света складываются и образуют светлые полосы, а на других – гасят друг друга, создавая темные полосы. Никакая корпускулярная модель света не в состоянии даже приблизительно объяснить возникновение такого рисунка.
Сторонники корпускулярной теории окончательно признали свое поражение в начале 1860-х гг., когда выяснилось, что скорость распространения света точно соответствует предсказанию новой теории электромагнитного излучения Джеймса Клерка Максвелла, основанной на волновой модели. Вычисления Максвелла показали, что свет есть не что иное, как форма электромагнитного излучения, описываемая уравнениями, решения которых представляют собой волны с разными частотами, соответствующие разным видам электромагнитного излучения.
Однако в этой истории случился еще один неожиданный поворот. Если опыт Юнга подтолкнул ученых к признанию волновой модели света, то результаты двух других экспериментов, проведенных в конце XIX в., можно было объяснить, только предположив, что свет распространяется дискретными порциями, или пакетами. Иначе говоря, квантуется.
Изготовление волновой какофонии
Первый намек на то, что свет может и не быть волнообразным, появился из попыток понять световое или электромагнитное излучение, возникающее в угольных печах, ставших двигателем промышленной революции. Тепло есть движение, но если привести в движение электрон, то, поскольку у него есть отрицательный электрический заряд, он будет испускать электромагнитное излучение. Поэтому раскаленные предметы и светятся: движущиеся в них электроны излучают. Электрон можно представить себе в виде человека, держащего в руке один конец скакалки: когда рука человека движется вверх и вниз, скакалка начинает совершать волнообразные колебания. Каждая волна имеет частоту, равную числу пульсаций волны в секунду. Именно частота определяет, например, цвет видимого света. Красный свет имеет низкую частоту, синий – более высокую. Частота также играет роль в определении энергии, содержащейся в волне. Чем выше частота, тем выше энергия волны. Другой фактор, определяющий энергию волны, – это ее амплитуда. Амплитуда определяет размах волны. Возвращаясь к тому же примеру, чем энергичнее мы раскачиваем скакалку, тем с большим размахом она колеблется. На протяжении многих столетий ученые использовали основную частоту излучения в качестве меры температуры. Красное каление. Белое каление. Чем горячее огонь, тем выше частота испускаемого им света.