Категории
Самые читаемые книги
ЧитаемОнлайн » Компьютеры и Интернет » Прочая околокомпьтерная литература » Десять «горячих точек» в исследованиях по искусственному интеллекту - Дмитрий Поспелов

Десять «горячих точек» в исследованиях по искусственному интеллекту - Дмитрий Поспелов

Читать онлайн Десять «горячих точек» в исследованиях по искусственному интеллекту - Дмитрий Поспелов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4
Перейти на страницу:

Но остаются, по крайней мере, две важные проблемы, решение которых пока не найдено: а) как цели связаны с когнитивной структурой и б) как описываются когнитивные структуры тех типов текстов, которые нужны, например, в процессе естественно-языкового диалога. Большое внимание к проблемам теории речевых актов (нового направления в лингвистике) со стороны специалистов по ИИ подогревается надеждами найти здесь ответы на поставленные вопросы.

Неменьшей проблемой является переход от нелинейной структуры текста к ее линейному представлению. Этот переход тесно связан с исследованиями по гипертекстам. Определенный бум, возникший в этой области, как раз и связан с осознанием того факта, что линейный по форме текст, как правило, является внешним кодом нелинейной структуры, на которую он «натянут». Гипертекстовые технологии призваны не только обеспечить возможность работы с нелинейным представлением текстов, но и должны как-то решать задачи его линеаризации и перехода от линейного представления к гипертекстовому.

Этот комплекс взаимосвязанных задач сейчас настолько активно изучается, что есть немалые основания считать, что в ближайшие годы проблемы синтеза текстов найдут свое разрешение.

7. Когнитивная графика

Исторически сложилось так, что системы технического зрения и машинной графики всегда находились где-то на окраине области ИИ. Как и модели распознавания образов, методы, используемые для решения возникающих здесь задач, по своей сути были мало чем похожи на те, которые традиционно использовали специалисты по искусственному интеллекту. Для классических «систем, основанных на знаниях», как часто называются экспертные и другие интеллектуальные системы, уровень сенсорных и перцептивных процессов, играющих фундаментальную роль при зрительном восприятии или восприятии речи, оказался слишком «мелким». В их базах знаний был реализован куда более «крупный» уровень ментальных представлений. И пока специалисты по использованию зрительной и акустической информации в интеллектуальных системах занимались «нижними» уровнями восприятия и генерации, остальные специалисты, работающие в области ИИ, не находили с ними общего языка.

Настоящее общение между ними началось в 80-е годы, когда стали появляться первые исследования в области ментальной интерпретации перцептивных образов (анализ трехмерных сцен) и в области анимации зрительных картин, связанных с ментальными представлениями. Установление связи между текстами, описывающими сцены, и соответствующими изображениями потребовало наличия в базах знаний специальных представлений для зрительных образов и процедур соотнесения их с традиционными формами представления знаний.

Графическая информация стала трактоваться с позиций знаний, содержащихся в ней. Если до этого ее функция сводилась к иллюстрации тех или иных знаний и решений, то теперь она стала включаться равноправным образом в те когнитивные процессы, которые моделируются в базах знаний и на основе их содержимого. Термин «когнитивная графика» отражает этот принципиальный переход от иллюстрирующих изображений к видеообразам, способствующим решению задач и активно используемых для этого.

Когнитивная функция изображений использовалась в науке и до появления компьютеров. Образные представления, связанные с понятиями граф, дерево, сеть и т.п. помогли доказать немало новых теорем, круги Эйлера позволили визуализировать абстрактное отношение силлогистики Аристотеля, диаграммы Венна сделали наглядными процедуры анализа функций алгебры логики.

Систематическое использование когнитивной графики в компьютерах в составе человеко-машинных систем сулит многое. Даже весьма робкие попытки в этом направлении, известные как мультимедиа-технологии, привлекающие сейчас пристальное внимание специалистов (особенно тех, кто занят созданием интеллектуальных обучающих систем), показывает перспективность подобных исследований.

Пока же область компьютеризации правополушарных функций мозга человека остается почти терра инкогнито. Здесь начаты лишь первые большие проекты, направленные на создание систем, опирающихся на когнитивную графику. На наш взгляд, в ближайшие годы следует ожидать качественного прорыва в этой области ИИ.

8. Многоагентные системы

Тема с таким названием возникла на конференциях, посвященных проблемам ИИ, где-то в первой половине 80-х годов. Причин для появления такой проблематики было несколько. Прежде всего, стало ясно, что эффективная реализация ряда важных для интеллектуальных систем процедур требует параллельной и асинхронной их организации. Подобные процессы интегрируют в себе активности отдельных центров, решающих свои локальные задачи. Но эти локальные задачи и пути их решения должны быть согласованы в границах некоторых глобальных целей.

Примерами процедур такого рода могут быть процедуры согласования мнений различных экспертов по поиску решения сложной многоцелевой задачи, согласование локальных локомоций при синтезе интегрального движения (например, движение робота, снабженного зрением и манипуляторами) или процедура коллективного взаимодействия интеллектуальных систем при решении в автономном режиме некоторой общей задачи.

Появление специальных архитектур, призванных поддерживать такую организацию процессов (например, параллельные вычислительные системы, в которых используется принцип «доски объявлений»), еще более усилило интерес к многоагентным моделям. Наконец, уверенность в том, что в нервных тканях живых организмов реализуется асинхронный и параллельный режим поиска решения, также оказала свое влияние на исследования в области многоагентных систем.

Нужно отметить, что идеология моделей такого рода во многом опирается на методы и результаты, полученные ранее вне сферы интересов собственно искусственного интеллекта. Еще в конце 50-х годов появились первые работы в области клеточных автоматов и моделей коллективного поведения автоматов. Эти работы заложили основу для появления многоагентных систем. Новое, что внесли в эти исследования специалисты по интеллектуальным системам, – это повышение «уровня интеллекта» агентов. Они стали способны использовать свои локальные знания для достижения своих целей. И задачи согласования, организации их целесообразного взаимодействия трансформировались на верхнем уровне в задачи согласования целей и знаний, т.е. стали напрямую соотноситься с проблематикой искусственного интеллекта.

Возникающие тут проблемы тесно связаны с проблемами динамических баз знаний, с необходимостью оценки конфликтных целей, противоречий в знаниях. Они также предполагают использование упоминавшихся выше процедур оправдания в системах имеющихся знаний и концептуальных моделей.

Сторонники этого нового системного движения надеются, что в начале следующего века будет создано новое научное направление – теория асинхронных конфликтующих процессов или что-то подобное с другим названием, которое еще не появилось.

9. Сетевые модели.

Интеллектуальные системы, основанные на правилах (продукциях), принесли не только радость решения ряда важных задач, но и породили сомнения в том, что именно они призваны остаться основными моделями представления знаний в интеллектуальных системах. Многочисленные дискуссии 80- х годов, проводившиеся специалистами в области ИИ по этому поводу, привели к укреплению сетевой парадигмы, несколько отодвинутой в сторону триумфальным выходом на сцену продукционных моделей. И хотя исследования в области семантических сетей, каузальных сетей и сетей другого типа продолжались, они были малочисленными и не слишком продуктивными.

Но к концу 80-х годов сетевые модели стали развиваться более быстрыми темпами. Этот процесс совпал с пробуждением интереса к давно забытым нейронным архитектурам, появлением транспьютерных систем и нейрокомпьютеров, а также с возвращением к работам, опирающимся на эволюционные модели и эволюционное программирование. Возник определенный бум, который был даже окрещен неодарвинизмом.

Если к концу первого этапа развития сетевых моделей (в основном в виде нейронных многослойных систем типа персептронов) наступило разочарование в их возможностях и простоте их аппаратной реализации, то в 80-х годах эти сомнения были отброшены. Комплекс исследований в этой области так возрос, что произошло практическое отпочкование специалистов, работающих в области сетевых моделей, от основного ядра тех, кто причисляет себя к искусственному интеллекту. У «сетевиков» появились свои журналы, они стали проводить свои симпозиумы и конференции и формировать свою терминологию. Этот разрыв нарастает, что по-видимому, приведет к возникновению двух наук, связанных с построением интеллектуальных систем. Одна из них будет по-прежнему опираться на уровень ментальных (информационных) представлений, а другая – на уровень структурной организации (по типу нервных тканей), порождающей нужные решения. Во всяком случае в 90-е годы вряд ли можно ожидать спад интереса к сетевым моделям и многочисленным нерешенным проблемам, связанным с их построением и функционированием.

1 2 3 4
Перейти на страницу:
На этой странице вы можете бесплатно скачать Десять «горячих точек» в исследованиях по искусственному интеллекту - Дмитрий Поспелов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...