Гистология. Полный курс за 3 дня - Т. Селезнева
Шрифт:
Интервал:
Закладка:
Функции плазмолеммы:
1) разграничительная (барьерная);
2) рецепторная;
3) антигенная;
4) транспортная;
5) образование межклеточных контактов.
Химический состав веществ плазмолеммы: белки, липиды, углеводы.
Строение плазмолеммы:
1) двойной слой липидных молекул, составляющий основу плазмолеммы, в которую местами включены молекулы белков;
2) надмембранный слой;
3) подмембранный слой, имеющийся в некоторых клетках.
В каждой липидной молекуле различают две части:
1) гидрофильную головку;
2) гидрофобные хвосты.
Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки соприкасаются с внешней и внутренней средой.
Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По выполняемой функции белки плазмолеммы подразделяются на:
1) структурные;
2) транспортные;
3) белки-рецепторы;
4) белки-ферменты;
5) антигенные детерминанты.
Находящиеся на внешней поверхности плазмолеммы белки и гидрофильные головки липидов обычно связаны с цепочками углеводов и образуют сложные полимерные молекулы. Именно эти макромолекулы и составляют надмембранный слой – гликокаликс. Значительная часть поверхностных гликопротеидов и гликолипидов выполняет в норме рецепторные функции: воспринимает гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ, и тем самым оказывают влияние на функции клеток.
Различают следующие способы транспорта веществ:
1) способ диффузии веществ (ионов, некоторых низкомолекулярных веществ) через плазмолемму без затраты энергии;
2) активный транспорт веществ (аминокислот, нуклеотидов и др.) с помощью белков-переносчиков с затратой энергии;
3) везикулярный транспорт (производится посредством везикул (пузырьков)). Подразделяется на эндоцитоз – транспорт веществ в клетку, экзоцитоз – транспорт веществ из клетки.
В свою очередь, эндоцитоз подразделяется на:
1) фагоцитоз – захват и перемещение в клетку;
2) пиноцитоз – перенос воды и небольших молекул.
Процесс фагоцитоза подразделяется на несколько фаз:
1) адгезию (прилипание) объекта к цитолемме фагоцитирующей клетки;
2) поглощение объекта путем образования вначале углубления инвагинации, а затем передвижения ее в гиалоплазму.
В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и др.), между плазмолеммами контактирующих клеток формируются связи – межклеточные контакты.
Типы межклеточных контактов:
1) простой контакт – 15 – 20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов). Простые контакты занимают наиболее обширные участки соприкасающихся клеток. При помощи простых контактов осуществляется слабая связь – адгезия, не препятствующая транспортированию веществ в межклеточные пространства. Разновидностью простого контакта является контакт типа замка, когда плазмолеммы соседних клеток вместе с участками цитоплазмы как бы впячиваются друг в друга, чем достигается увеличение площади соприкасающихся поверхностей и более прочная механическая связь;
2) десмосомный контакт – 0,5 мкм. Десмосомные контакты (или пятна сцепления) представляют собой небольшие участки взаимодействия между клетками. Каждый такой участок имеет трехслойное строение и состоит из двух полудесмосом – электронноплотных участков, расположенных в цитоплазме в местах контакта клеток, и скопления электронноплотного материала в межмембранном пространстве – 15 – 20 нм. Количество десмосомных контактов у одной клетки может достигать 2000. Функциональная роль десмосом – обеспечение механического контакта между клетками;
3) плотный контакт. Данный контакт называют также замыкательными пластинками. Они локализуются в органах (желудке, кишечнике), в которых эпителий отграничивает агрессивное содержимое данных органов, например желудочный сок, содержащий соляную кислоту. Плотные контакты находятся только между апикальными частями клеток, охватывая по всему периметру каждую клетку. В этих участках межмембранные пространства отсутствуют, а билипидные мембраны соседних клеток сливаются в единую билипидную мембрану. В прилежащих участках цитоплазмы соприкасающихся клеток отмечают скопление электронноплотного материала. Функциональная роль плотных контактов – прочная механическая связь клеток, препятствие транспорту веществ по межклеточным пространствам;
4) щелевидный контакт (или нексусы) – 0,5 – 3 мкм (обе мембраны пронизаны в поперечном направлении белковыми молекулами (или коннексонами), содержащими гидрофильные каналы, через которые осуществляется обмен ионами и микромолекулами соседних клеток, чем и обеспечивается их функциональная связь). Данные контакты представляют собой ограниченные участки контактов соседних клеток. Примером щелевидных контактов (нексусов) служат контакты кардиомиоцитов, при этом через них происходит распространение биопотенциалов и содружественное сокращение сердечной мускулатуры;
5) синаптический контакт (или синапс) – специфические контакты между нервными клетками (межнейронные синапсы) или между нервными и мышечными клетками (мионевральные синапсы). Функциональная роль синапсов – передача нервного импульса или волны возбуждения (торможения) с одной клетки на другую или с нервной клетки на мышечную.
Гиалоплазма
Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеро в (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.
Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.
Органеллы
Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.
Классификация органелл:
1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;
2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.
В свою очередь, общие органеллы подразделяются на мембранные и немембранные.
Специальные органеллы подразделяются на:
1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);
2) органеллы клеточной поверхности (реснички, жгутики).
К мембранным органеллам относятся:
1) митохондрии;
2) эндоплазматическая сеть;
3) пластинчатый комплекс;
4) лизосомы;
5) пероксисомы.
К немембранным органеллам относятся:
1) рибосомы;
2) клеточный центр;
3) микротрубочки;
4) микрофибриллы;
5) микрофиламенты.
Принцип строения мембранных органелл
Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.
Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.
Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.
Митохондрии
Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.
Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).