Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Занимательная физика на войне - Владимир Внуков

Занимательная физика на войне - Владимир Внуков

Читать онлайн Занимательная физика на войне - Владимир Внуков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 11
Перейти на страницу:

Рис. 12. Сопротивление воздуха двигающимся в нем телам одинаковой толщины (одного диаметра), но разной формы: А — пластинка; Б — шар; В — тело удобообтекаемой формы. Слева показана величина сопротивления воздуха каждому из этих тел.

Изготавливая все быстродвигающиеся предметы, теперь и стараются придать им удобообтекаемую форму. Кузов автомобиля и аэроплана, очертание пули, аэропланной бомбы и снаряда (рис. 13) — все это имеет особый смысл и предназначено для уменьшения сопротивления воздуха.

Рис. 13. Пули и снаряды раньше и теперь: 1) круглое ядро; 2) старая пуля; 3) современная пуля; 4) современные снаряды; 5) снаряды и пули, предполагаемые к введению в будущем; А — ведущий поясок на снарядах.

Последнее время задумали заострять снаряды и пули не только спереди, но и сзади (см. рис. 13), но к окончательным выводам еще не пришли ввиду сложности вопроса выбрасывания таких снарядов из орудий.

Насколько большое значение имеет всё же сопротивление воздуха для пуль и снарядов, несмотря на заостренную их форму, видно из рис. 14, где показаны линии полета, какие были бы в безвоздушном пространстве и какие получаются в воздухе.

Рис. 14. Как летит острая пуля в воздухе и как летела бы она в пустоте.

В особенности заметно влияние воздуха для легкой сравнительно пули.

Дальность полета ее в воздухе в 22 раза меньше, чем была бы в безвоздушном пространстве! Но и тяжелые снаряды теряют на этом немало, стоит сравнить лишь начальную и конечную скорость полета их: обычно последняя в 3 или 4 раза меньше первой, Значит, не будь воздуха, снаряды летели бы в 3 или 4 раза дальше, чем они летят сейчас.

Кто выше всех поднимался над землей

Одни решат, что аэроплан, другие подумают о птицах, третьи вспомнят воздушный шар. Но все окажутся неправыми. Выше всех поднимаются над землей снаряды.

Вот на рис. 15 показаны предельные достижения подъема над землей человека, птицы и снарядов.

Рис. 15. Кто выше всех поднимался над землей.

Как видите, снаряды забираются много выше всех остальных участников в этом «состязании на высоту».

Зачем же понадобилось забрасывать снаряды так высоко? На это есть, конечно, свои причины.

Во-первых, желая особенно далеко забросить снаряд, приходится, естественно, высоко поднимать его траекторию. А, во-вторых, здесь скрыт секрет «сверхдальней» стрельбы: второй способ борьбы с влиянием воздуха на полет снаряда.

Совершенно очевидно, чем воздух плотнее, тем большее сопротивление оказывает он летящему снаряду. Но, ведь, воздух имеет неодинаковую плотность на разной высоте. Чем выше, тем воздух реже, и на больших высотах плотность воздуха ничтожна. Считают, что на высоте в 17 км воздух имеет плотность в 100 раз меньшую, чем у поверхности земли, а еще выше плотность воздуха такова, что практически с ней можно не считаться и пространство считать безвоздушным.

Вот и подумайте, какую выгоду имеет снаряд, летящий большую часть своего пути в таком редком воздухе. Сопротивление воздуха полету снаряда на этом участке его пути вовсе не будет иметь места, а значит, и скорость его будет оставаться почти постоянной. В результате это приводит к дальностям стрельбы более 100 километров.

Что это не мечта, а действительность, доказывает обстрел немцами Парижа в мировую войну.

Волчок и пуля

Поставьте любой волчок на пол, и он тотчас упадет. А если волчок быстро вращается, он прочно стоит не только на плоскости но и на бечевке, на краю стакана и т. п. (рис. 16).

Рис. 16. Особый волчок — гироскоп. Благодаря быстрому вращению сохраняет устойчивость в любом положении.

Последнее возможно, правда, не для всякого волчка, а лишь для имеющих особое устройство; их называют «гироскоп».

Факт устойчивости волчка, благодаря вращению, явление не только интересное, но и полезное. Благодаря большим тяжелым гироскопам возможна однорельсовая железная дорога, вагоны которой сохраняют полную устойчивость, несмотря на наличие лишь двух колес. Гироскопы позволяют на аэропланах в любой момент узнать наклон свой к горизонту. Гироскопы находят себе все большее и большее применение в технике.

Тот же принцип сохранения устойчивости, благодаря быстрому вращению, применяют и для пуль и снарядов. Выше мы отмечали уже, что современные снаряды имеют форму заостренных цилиндров (см. рис. 13), чтобы уменьшить сопротивление воздуха в полете.

Представьте себе, как полетел бы такой снаряд, если бы он не вращался? Очевидно, столкнувшись с воздухом, снаряд начал бы закидываться головной частью назад и скоро перевернулся бы, продолжая и дальше кувыркаться во все время полета. Кувыркаясь, снаряд встречал бы воздух то боками, то дном, что вызвало бы, конечно, большое увеличение сопротивления воздуха. В результате весь смысл придания снаряду удлиненной формы пропал бы, и снаряды падали бы ближе, чем старые круглые ядра.

Чтобы этого не случилось, снарядам еще в канале ствола сообщают, кроме поступательного, также и вращательное движение. Для этого в стволе делают «нарезы» — винтообразные желобки (рис. 17 и 18), а на снарядах — медные «ведущие пояски» (см. рис. 13).[9]

Рис. 17. Нарезы в канале ствола: 1) нарез; 2) поле.

Рис. 18. Нарезы в канале ствола: 1) нарез; 2) поле.

В момент выстрела ведущий поясок, более мягкий, чем сталь ствола, врезается в нарезы и, следуя дальше вдоль канала ствола заставляет снаряд вращаться.

На пулях поясков не делают, так как оболочка их (обычно мельхиоровая) мягче стали и, чуть-чуть врезаясь в нарезы, заставляет уже пулю следовать по ним.

Вращение снарядов и пуль делает их вполне устойчивыми в полете, и они, не кувыркаясь, достигают цели всегда головкой вперед.

Еще одно состязание в скорости

Вращательное движение тел можно наблюдать и в природе и в технике. Вращается земля вокруг своей оси. Вращаются колеса всевозможных экипажей. С большой скоростью вращаются «маховые колеса» машин, пропеллер аэроплана, винты пароходов, колеса водяных и паровых турбин и т. д. Вращаются, как известно, и пули и снаряды.

Вот мы и предлагаем устроить состязание в скорости вращения всех известных нам тел и частей машин.

Выпишем сначала скорости, известные в науке и технике.

В одну секунду[10] делает оборотов:

1) Земной шар — 1/8 6400.

2) Винт пассажирского парохода — ок. 3.

3) Колесо водяной турбины — ок. 5–6.

4) Колесо велосипеда на ходу — ок. 6–8.

3) Колесо автомобиля — ок. 16.

6) Пропеллер аэроплана — до 20.

7) Колесо электропоезда ок. 25.

8) Электродвигатели — до 50.

9) Гироскопы — до 100.

10) Колесо паровой турбины — до 500 (обычно ок. 50).

Ну, а сколько же оборотов в секунду делают снаряды и пули? Сделаем расчет для снаряда знакомой уже нам 76-мм пушки. Из этой пушки снаряд вылетает со скоростью 588 метров в секунду, а один полный оборот снаряд делает, переместившись на 2,3 метра (длина «хода» винтовой нарезки пушки равна 2,3 метра).

Таким образом, в 1 секунду снаряд этой пушки сделает 256 оборотов (588: 2,3 = 256).

Результат, не выходящий за пределы нашей таблицы, и даже не так уж близок к ее рекордной цифре. Для других орудий обычное число оборотов снаряда в секунду бывает и еще меньше.

Опыт показал, что такая скорость вращения снарядов является вполне достаточной для придания им нужной устойчивости в полете (рис. 19).

Рис. 19. Снаряд в полете. При достаточных скоростях вращения ось снаряда совпадает с траекторией, и снаряд падает головкой вперед.

Совсем другое дело пули. Вес пули очень мал, и для устойчивости ее в полете нужна гораздо большая скорость вращения.

Поэтому для пуль скорость вращения намного больше, чем для снарядов.

Вот расчет: начальная скорость полета пули— 880 метров в секунду, один полный оборот пуля делает, перемещаясь на 18,5 см (приблизительно), следовательно, в секунду пуля сделает около 4 750 оборотов.

Более четырех тысяч оборотов в секунду! Эта скорость уже во много раз превышает скорость вращения самого скорого из двигателей — паровой турбины.

Итак, победителем на нашем состязании оказалась маленькая ружейная пуля. Военной технике принадлежит еще один из рекордов скоростей на земле.

Глава II. ОГНЕСТРЕЛЬНОЕ ОРУЖИЕ КАК ТЕПЛОВАЯ МАШИНА

Порох вместо бензина, снаряд в роли поршня

Машина, перерабатывающая тепловую энергию в механическую, называется тепловой машиной. Паровая поршневая машина, паровая турбина, двигатель внутреннего сгорания — все это тепловые машины, которые за счет энергии топлива дают механическую энергию движения. Во всякой тепловой машине, кроме турбины, главной частью являются цилиндр и поршень. В цилиндр вводят перегретый (значит, под большим давлением) пар или горючую смесь жидкого топлива с воздухом (бензин, нефть, газолин и т. п.). В первом случае пар, стремясь расшириться, будет толкать поршень, а во втором случае смесь топлива с воздухом, быстро сгорая (взрываясь), превратится в сильно нагретые газы, которые также, стремясь расшириться, толкнут поршень. Быстро следующие друг за дугой толчки заставляют поршень двигаться взад и вперед, что в свою очередь помощью особой передачи приводит в движение рабочий вал или колесо машины.

1 2 3 4 5 6 7 8 9 10 11
Перейти на страницу:
На этой странице вы можете бесплатно скачать Занимательная физика на войне - Владимир Внуков торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...