Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу

Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу

Читать онлайн Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 57
Перейти на страницу:

Столь же необъяснимый феномен представлял собой свет, который испускали разогреваемые атомы. Еще в 1853 году шведский ученый Андерс Ангстрем пропустил искру через трубку, наполненную водородом, и проанализировал полученный свет. Можно было предположить, что газ будет светиться всеми цветами радуги; в конце концов, что такое Солнце, как не светящийся газовый шар? Вместо этого Ангстрем обнаружил, что водород светится тремя отчетливыми цветами: красным, сине-зеленым и фиолетовым, давая три чистые узкие дуги, как у радуги. Вскоре было выявлено, что так ведут себя все химические элементы. У каждого из них есть уникальный цветовой штрихкод. К тому времени как Резерфорд выступил по поводу атомного ядра, ученый Генрих Кайзер завершил работу над шеститомным справочником из 5000 страниц, озаглавленным Handbuch der Spectroscopie («Справочник по спектроскопии»): он описывал все цветные светящиеся линии известных элементов. Вопрос, конечно, зачем? И не только «Зачем, профессор Кайзер?» (наверное, за обедом над его фамилией нередко шутили), но и «Почему так много цветных линий?». Более 60 лет наука, получившая название спектроскопии, была эмпирическим триумфом и теоретическим провалом.

В марте 1912 года датский физик Нильс Бор, очарованный проблемой строения атома, отправился в Манчестер для встречи с Резерфордом. Позже он отмечал, что попытки расшифровать внутреннее строение атома по данным спектроскопии были чем-то сродни выведению базовых постулатов биологии из раскраски крыла бабочки. Атом Резерфорда с его моделью в духе Солнечной системы дал Бору необходимую подсказку, и в 1913 году он уже опубликовал первую квантовую теорию строения атома. У этой гипотезы, конечно, были свои проблемы, но она содержала несколько важнейших идей, подстегнувших развитие современной квантовой теории. Бор заключил, что электроны могут занимать лишь определенные орбиты вокруг ядра, а орбитой с самой низкой энергией будет ближайшая. Он утверждал также, что электроны способны перепрыгивать с орбиты на орбиту. Они переходят на более отдаленную орбиту, когда получают энергию (например, от искры в трубке), а затем продвигаются ближе к центру, одновременно излучая свет. Цвет этого излучения непосредственно определяется разностью энергий электрона на этих двух орбитах. Рис. 2.1 иллюстрирует основную идею; стрелка показывает, как электрон перепрыгивает с третьего энергетического уровня на второй, испуская свет (представленный волнистой линией). В модели Бора электрон может двигаться вокруг протона (ядра атома водорода) лишь по одной из особых, «квантованных» орбит; движение по спирали просто запрещено. Таким образом, модель Бора позволила ему вычислить длины волн (то есть цвета) света, который наблюдался Ангстремом: они соответствовали прыжку электрона с пятой орбиты на вторую (фиолетовый цвет), с четвертой орбиты на вторую (сине-зеленый цвет) и с третьей на вторую (красный цвет). Модель Бора к тому же корректно предсказывала существование света, который должен испускаться при переходе электрона на первую орбиту. Этот свет – ультрафиолетовая часть спектра, невидимая человеческому глазу. Поэтому не видел ее и Ангстрем. Однако в 1906 году ее зафиксировал гарвардский физик Теодор Лайман, и эти данные замечательно описывались моделью Бора.

Рис. 2.1. Модель атома Бора, иллюстрирующая испускание фотона (волнистая линия) в результате перехода электрона с одной орбиты на другую (обозначен стрелкой)

Хотя Бор не сумел распространить свою модель дальше атома водорода, выдвинутые идеи можно было применить и к другим атомам. Например, если предположить, что у атомов каждого элемента набор орбит уникален, они будут испускать световые лучи лишь определенного цвета. Таким образом, эти цвета служат своего рода «отпечатками пальцев» атома, и астрономы, разумеется, немедленно воспользовались уникальностью спектральных линий атомов для определения физического состава звезд.

Модель Бора – неплохое начало, но всем была ясна ее недостаточность: например, почему электроны не могут двигаться по спирали, когда известно, что они должны терять энергию, испуская электромагнитные волны (идея, получившая реальное подтверждение с появлением радио)? И почему орбиты электрона изначально квантуются? И как насчет более тяжелых, чем водород, элементов: что делать для понимания их строения?

Но какой бы несовершенной ни казалась теория Бора, это был критически важный шаг и пример того, как порой учеными достигается прогресс. Нет никакой причины складывать оружие перед лицом озадачивающих и порой ставящих в тупик фактов. В подобных случаях ученые часто делают так называемый анзац – прикидку, или, если угодно, правдоподобное допущение, а затем переходят к вычислению его последствий. Если предположение работает, то есть получающаяся теория согласуется с экспериментальными данными, то можно с большей уверенностью вернуться к изначальной гипотезе и пытаться более детально в ней разобраться. Анзац Бора 13 лет оставался успешным, но не до конца объясненным.

Мы вернемся к истории этих ранних квантовых идей на последующих страницах книги, но сейчас перед нами лишь множество странных результатов и вопросы с неполными ответами – как и перед основоположниками квантовой теории. Если резюмировать, то Эйнштейн, следуя за Планком, предположил, что свет состоит из частиц, но Максвелл уже показал, что свет ведет себя как волна. Резерфорд и Бор прокладывали путь к пониманию строения атома, но поведение электрона внутри атома не согласовывалось ни с одной из известных в то время теорий. А разнообразные явления, носящие общее название радиоактивности, при которой атомы спонтанно делятся на части по невыясненным причинам, оставались загадкой – во многом потому, что вносили в физику волнующий элемент случайности. Сомнений не оставалось: в субатомном мире грядет что-то странное.

Совершение первого шага к общему, согласованному ответу на эти вопросы большинство приписывают немецкому физику Вернеру Гейзенбергу. То, что он сделал, стало совершенно новым подходом к теории материи и физических сил. В июле 1925 года Гейзенберг опубликовал статью, в которой рассматривал старые добрые идеи и гипотезы, в том числе модель атома Бора, но под углом зрения совершенно нового подхода к физике. Он начал так: «В этой работе делается попытка получить основы квантовой теоретической механики, которые базируются исключительно на соотношениях между принципиально наблюдаемыми величинами». Это важный шаг, потому что Гейзенберг таким образом подчеркивает: лежащая в основе квантовой теории математика не обязана согласовываться с чем-то уже известным. Задачей квантовой теории должно стать непосредственное предсказание поведения наблюдаемых объектов – например, цвета световых лучей, испускаемых атомами водорода. Нельзя ожидать от нее сколь-либо удовлетворительного мысленного представления внутреннего механизма поведения атома, потому что это и не нужно, и, может быть, даже нереально. Одним ударом Гейзенберг развеял идею о том, что действия природы непременно согласуются со здравым смыслом. Это не значит, что теория микромира не может согласовываться с нашим повседневным опытом описания движения крупных объектов – например, самолетов или теннисных мячей. Но нужно быть готовым отбросить заблуждение о том, что мелкие предметы оказываются всего лишь маленькими разновидностями крупных, а именно подобное заблуждение и может выработаться в ходе экспериментальных наблюдений.

Нет никаких сомнений, что квантовая теория – вещь хитрая, и уж тем более несомненно, что чрезвычайно хитер и сам подход Гейзенберга. Нобелевский лауреат Стивен Вайнберг, один из величайших современных физиков, так писал о статье Гейзенберга 1925 года:

«Если для читателя остается тайной то, что делал Гейзенберг, он в этом не одинок. Я несколько раз пытался прочитать статью, которую он написал по возвращении с острова Гельголанд, и, хотя я полагаю, что разбираюсь в квантовой механике, так до конца и не уловил обоснования математических действий автора в этой работе. Физики-теоретики в своих самых успешных трудах часто играют одну из двух ролей: они либо мудрецы, либо волшебники… Обычно не так сложно понять работы физиков-мудрецов, но работы физиков-волшебников порой совершенно непостижимы. В этом смысле статья Гейзенберга 1925 года – настоящее волшебство».

Философия Гейзенберга, впрочем, ничего магического собой не представляет. Она проста, и именно она лежит в основе того подхода, которым мы пользуемся в книге: задача объясняющей природу теории – делать количественные предсказания, которые будут сопоставимы с экспериментальными результатами. Мы не имеем возможности разработать теорию, имеющую какое-то отношение к нашему восприятию мира в целом. К счастью, хотя мы и берем на вооружение философию Гейзенберга, будем следовать более понятному подходу к квантовому миру, разработанному Ричардом Фейнманом.

1 2 3 4 5 6 7 8 9 10 ... 57
Перейти на страницу:
На этой странице вы можете бесплатно скачать Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉