Бегство от удивлений - Анфилов Глеб Борисович
Шрифт:
Интервал:
Закладка:
И вот опыт. Ученый опускает в желоб шар и тут же подставляет под струйку бокал. Когда шар достигает заранее намеченной точки, быстро отодвигает бокал. Чем дольше катился шар, тем больше натекло воды. Ее остается поставить на весы — и время измерено. Чем не секундомер!
«Мои секунды мокрые, — говорил Галилей, — но зато их можно взвешивать».
Соблюдая элементарную строгость, стоит, впрочем, заметить, что эти часы не так просты, как может показаться. Вряд ли Галилей учитывал уменьшение давления (а значит, и скорости) водяной струи с понижением уровня воды в ведре. Этим можно пренебречь, лишь если ведро очень широкое, а струйка — узкая. Возможно, так оно и было.
Открытие ускоренияГалилеевский рабочий кабинет — прародитель всех нынешних роскошных физических лабораторий и институтов. А потому, глядя с уважением на современные циклотроны и реакторы, не лишне вспомнить, как в старой Пизе катились по желобу шары, спускались на нитях гири, текли водяные «стрелки» часов[2]. Эта большая работа, повторенная потом в тысячах и тысячах лабораторий — научных, университетских, школьных, — была первой классической серией экспериментов с движением тел под действием тяжести.
Из множества опытов Галилей отыскал главную особенность такого движения —оно равноускоренное. Чем дальше от начала пути, тем быстрее, причем скорость нарастает в равные промежутки времени строго одинаковыми порциями. Галилей первым понял, что, кроме скорости, у падающих камней и скатывающихся шаров есть еще ускорение — скорость изменения скорости. Желоб горизонтален — ускорения нет, есть только скорость. Шар катится равномерно. Появился наклон, и шар ускоряется. Круче наклонен желоб — больше ускорение. Это нехитрое понятие — замечательное открытие науки XVI века. Потому что прежде движение умели различать только по скоростям.
И еще Галилей вывел формулу пути равноускоренного движения. Вот она, хорошо знакомая нашим семиклассникам
S=at2/2
Путь S равен половине ускорения а, помноженной на квадрат времени t. Отличная формула! Знаешь время и ускорение — легко подсчитать путь, пройденный катящимся по желобу шаром. Знаешь путь и ускорение — вычислишь время. Знаешь время и путь — вычислишь ускорение. В том числе и таинственное ускорение силы тяжести, которое с удивительным постоянством гонит вниз падающие сосульки и пушечные ядра.
В самом деле: измерь высоту Пизанской башни (S) и засеки длительность падения с нее ядра (t), а потом подставь полученные величины в нашу формулу. В аккуратном опыте ускорение силы тяжести у поверхности Земли для всех тел неизменно составляет 9,81 метра в секунду за секунду. Оно обозначается буквой g. Это то самое «же», о котором теперь так много говорят космонавты. Галилей этой цифры, правда, получить не смог. Слишком уж несовершенны были приборы. Однако было окончательно сделано важнейшее заключение: не только вес, но и материал падающего тела на быстроту его падения не влияют. Если что и замедляет падение, так это воздух (или трение о желоб). Догадка по тому времени замечательная. Лишь значительно позднее, с изобретением воздушных насосов, она была подтверждена опытом.
Самоотверженный альпинистПо подсказкам Галилея мы выяснили, как падают тела: все с одним и тем же ускорением, независимо от веса и всего прочего. Но житейский опыт уверяет нас: именно вес заставляет тело падать. Если так, то получайте каверзный вопрос: тело, которое ничего не весит, и падать не должно? Верно?
Давайте сообразим. И пока сделаем вид, что ничего не знаем о силе тяготения, действующей «через пустоту». Пусть вес — только давление на опору.
В самом деле, вес неподвижных тел всегда проявляется как давление на опору. Камень, лежащий на моей ладони, давит на нее. Гиря давит на чашку весов. Все неподвижное весомо, если поблизости находится Земля.
Убери из-под гири опору — гиря начнет падать. Почему?
Хочется сказать: она начинает падать потому, что имеет вес.
Не будем спорить против этого желания. Но спросим еще: а движущиеся тела — имеют они вес? Начнут они падать, если из-под них убрать опору?
Попробуем разобраться логически.
Альпинист, нагруженный рюкзаком, лезет на гору. Поднимается на вершину и все время ощущает вес рюкзака. При таком движении «ноша тянет». Идти с рюкзаком тяжело. Сорвешься с горной тропки — полетишь в пропасть.
Ну, а каково с рюкзаком падать, тяжело или легко? Или, скажем, такой вопрос: с каким рюкзаком легче падать, с тяжелым или легким? Сохранится вес у падающего рюкзака? И у падающего альпиниста?
Ради опыта альпинист самоотверженно спрыгивает с горы. Низвергается вниз. Но... если альпинист и его рюкзак сохранят в падении свой вес (как давление на опору), то выйдет несуразица.
Судите сами. Альпинист летит вниз, а рюкзак, раз он сохраняет вес и, значит, давит на альпиниста сверху, подгоняет его падение. Без рюкзака он падал бы медленнее. Тяжелее рюкзак — вроде бы быстрее падение.
С другой стороны, и один рюкзак без альпиниста падал бы медленнее, потому что альпинист не тянул бы его своим (сохранившимся) весом снизу. А привязав к себе медленно падающий рюкзак, альпинист замедлил бы, словно парашютом, и собственное падение. Выходит, тяжелее рюкзак — медленнее падение.
Вот и несуразица: если в падении тела сохраняют вес, то, надев рюкзак, альпинист должен падать одновременно и быстрее и медленнее, чем без рюкзака. Такого быть не может, это — противоречие, чепуха.
Вывод: надетый рюкзак во время падения, во-первых, не давит на альпиниста и, во-вторых, не тянет его вверх. Другими словами, падающий рюкзак ничего не весит. И альпинист тоже ничего не весит, когда падает. У человека, свалившегося с горы вместе с поклажей, «ноша не тянет». Для всех без исключения свободно падающих тел тяжести не существует. Они пребывают в состоянии невесомости.
Странный получился вывод. Тяжесть — причина падения, а все, что падает, не имеет этой самой тяжести, невесомо. Для новичка это неожиданно и удивительно.
Но если вдуматься, вывод логичен[3]. Он отлично согласуется с тем, что мы узнали раньше о постоянстве земного ускорения. В свободном падении нет тяжести (именно как давления на опору). Падающие песчинка и мельничный жернов не давят друг на друга — летят рядом в полном равноправии, в каждый момент с одинаковой скоростью, с одинаковым ускорением g.
Кто прав, кто виноватИтак, вес, как давление на опору, отнюдь не прикован к телу навечно. Его нет у тел, которые свободно падают. Узнав это, давайте-ка рискнем ответить на манящее «почему»: почему все тела падают одинаково быстро, с равным ускорением? Попробуем сказать: потому что в падении они теряют вес, а это делает невозможным падение с разными ускорениями (во избежание чепухи, с которой мы столкнулись, когда рассуждали об альпинисте и его рюкзаке).
Если хотите, можете перевернуть вопрос. Спросить: почему падающие тела теряют вес? И ответить: потому что они падают с одинаковым ускорением (стало быть, не могут давить друг на друга).
Удовлетворены вы?
Едва ли. Это ведь что-то вроде слов «потому что потому», глубокомысленно сказанных в ответ на «почему».
Пропажа веса — важный признак падения, но, подметив этот признак, мы еще не нашли его причины. Как не нашли мы и причины одинакового ускорения всех свободно падающих тел. Приведенные ответы ничего не объясняют, только сваливают вину с больной головы на здоровую. Ускорение падения постоянно — виновата-де потеря веса. Вес падающего тела пропал — надо винить постоянство ускорения в падении.
А тут правых и виноватых искать бессмысленно. Падающие тела пунктуально исполняют законы природы. Значит, я рано попытался отвечать на «почему». Удивление разрешить пока не удалось.