Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Образовательная литература » Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан

Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан

Читать онлайн Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 36
Перейти на страницу:

Нелокальность более чем в двух местах

Истинная случайность может проявлять себя в двух местах. А может ли она проявляться в трех местах или в тысяче мест? Ответ неочевиден: быть может, все трехсторонние квантовые корреляции можно объяснить как комбинации двусторонних нелокальных случайностей. Сегодня мы знаем, что это не так и что существуют такие квантовые корреляции, которые требуют случайности, которая может проявляться во многих разных местах одновременно. Тем не менее нам еще предстоит много работы по исследованию многосторонней нелокальности[99].

Особо интересный случай – это ситуация, когда запутаны несколько пар квантовых систем, к примеру A – B и C – D, и при этом связанные измерения того типа, что используются в квантовой телепортации (см. главу 8), выполняются на системах, принадлежащих разным парам, к примеру на B и C. Естественно предположить, что разные запутанные пары независимы друг от друга. Если существует n пар, мы говорим о n-локальности. Это открывает целое поле для исследований, в которых совмещаются две грани запутанности – идея неразделимых состояний и идея связанных измерений[100].

Но кто решает, кому с кем быть запутанным? Где хранится информация о местах, в которых может проявляться нелокальная случайность? Может быть, существует ангел, который управляет огромным математическим пространством, известным нам как гильбертово пространство (есть предположение, что она хранится именно там)? Мы никогда не узнаем этого в нашем трехмерном мире. Несмотря на серьезность этого по-детски простого вопроса, на него пока мало кто обращает внимание.

Позвольте мне рассказать о другой весьма популярной области исследований: что мы можем предсказать с помощью нелокальности, не используя при этом полный математический аппарат квантовой физики? В главе 4 мы видели, что для теоремы о запрете клонирования можно дать полное доказательство. Затем в главе 7 мы коснулись темы практического применения в генераторах случайных чисел и квантовой криптографии. И даже можем извлечь определенные детали из соотношений неопределенности Гейзенберга[101]. С другой стороны мы по-прежнему не можем объяснить квантовую телепортацию исключительно на языке приборов, подобных тем, что в игре Белла. Сложным моментом здесь являются связанные измерения. Мы все-таки не можем зафиксировать существенные детали без привлечения математического аппарата квантовой физики. Важность этого исследования недавно оценили в Европе и запустили программу DIQUIP[102], объединившую исследователей из шести стран.

«Теорема о свободной воле»

Теперь, когда любое локальное объяснение исключено, естественно спросить, не может ли существовать какое-нибудь детерминистическое нелокальное объяснение? Ведь если не получилось сохранить локальность, мы можем по крайней мере сохранить детерминизм. Обратимся к тезису о детерминистических нелокальных переменных – таких, которые могут полностью определить результаты любого измерения.

В принципе, это выглядит правдоподобно. Квантовая теория предсказывает вероятности, и можно подумать, что достаточно рассмотреть статистику этих детерминистических переменных, чтобы воспроизвести квантовые вероятности. Это, по сути, основная идея имитирующих квантовые явления коммерческих программ, которые используют наши студенты. Так как это работает?

Вспомним, что для двух далеко разнесенных в пространстве событий хронология может зависеть от системы отсчета, которую мы используем для их описания. Поэтому, помимо изображения квантовых явлений на компьютере, о чем упоминалось выше, дополнительные детерминистические нелокальные переменные могут пригодиться только в том случае, если они способны делать одинаковые предсказания во всех системах отсчета. Такие переменные называются ковариантными. Мы увидим, что на самом деле это невозможно[103], а потому ковариантных детерминистических нелокальных переменных не существует. И это провозглашает конец детерминизма!

Чтобы показать, что такие нелокальные детерминистические переменные не существуют, нам нужно предположить, что Алиса и Боб обладают свободной волей. Некоторые ученые делают из этого вывод, что если люди действительно обладают свободной волей, то и квантовые частицы, такие как электроны, фотоны, атомы и т. д., тоже должны ею обладать. Столь поразительной формой представления результата мы обязаны британскому и американскому математиками Джону Конуэю и Саймону Кочену (эксперты в маркетинге, однако), которые назвали ее теоремой о свободе воли[104].

Давайте еще раз воспользуемся приемом сведения к абсурду. Доказательство довольно запутанное, поэтому если вы потеряетесь по пути, просто переходите к заключению. Представим, что Алиса и Боб играют в игру Белла и смотрят на происходящее из системы отсчета, в которой Алиса двигает джойстик чуть раньше Боба. Пусть k – это нелокальная переменна, которая, в соответствии с нашим предположением, определяет результаты, производимые приборами Алисы и Боба. Тогда результат Алисы зависит от переменной k и ее выбора x. Мы запишем это так: a = FAB (k, x), где FAB – некоторая функция. Если смотреть из этой системы отсчета, то, когда Боб двигает свой джойстик, его результат b может зависеть от переменной k и его выбора у и вдобавок от выбора Алисы x. Мы можем записать это так: b = SAB (k, x, y). Именно здесь мы видим, что переменная k нелокальна[105], так как результат Боба может зависеть от выбора Алисы. Заметьте, что обозначения FAB и SAB обозначают «первый» и «второй» в хронологическом порядке AB.

Теперь рассмотрим эту же ситуацию из другой системы отсчета, где Боб двигает джойстик чуть раньше, чем Алиса. К примеру, вторая система отсчета может быть связана с ракетой, которая очень быстро движется от Алисы к Бобу. В этом случае результат Боба b зависит только от переменной k и его выбора y, поэтому мы запишем так: b = FBA (k, y). Но теперь уже результат Алисы a может зависеть от нелокальной переменной k, ее выбора x и выбора Боба y, поэтому у нас получается a = SBA (k, x, y). Символы FBA и SBA опять обозначают «первый» и «второй», но в хронологическом порядке BA.

Но результат Алисы a не может зависеть от системы отсчета, в которой мы описываем эксперимент (или игру). Следовательно, всегда должно выполняться соотношение a = FAB (k, x) = SBA (k, x, y). Последнее равенство может быть справедливо лишь в том случае, когда SBA на самом деле не зависит от y, то есть результат Алисы на самом деле не зависит от выбора Боба. И наоборот, результат Боба не может зависеть от выбора Алисы. Но ведь это было условием локальности, сформулированным Беллом в 1964 году: прибор Алисы производит результат локально, так же как прибор Боба. В этом случае, как мы видели, Алиса и Боб не могут выиграть больше, чем 3 раза из 4. А это означает, что если они выигрывают больше трех раз из четырех, это исключает существование нелокальных переменных, которые одновременно являются детерминистическими и ковариантными.

Суммируя вышесказанное, отметим, что единственная возможность, которая остается – это существование недетерминистических нелокальных переменных. Так квантовая теория описывает игру Белла. Заметьте, что определение «недетерминистический» также является негативным. Оно не говорит нам, что это за переменные или как эти переменные или эти модели описывают игру Белла. Определение просто утверждает, что они не являются детерминистическими. В частности «недетерминистический» не означает «вероятностный» в обычном смысле этого слова, так как не является статистической смесью детерминистических случаев. (С хорошей иллюстрацией этого направления можно ознакомиться в статьях Колбека и Пьюси с соавторами[106].)

Скрытое воздействие?

Я не могу удержаться от описания одного последнего результата, тоже совсем недавнего, хоть он и отрицательный. Для спасения локальности, то есть идеи о том, что предметы и воздействия распространяются непрерывно из точки в точку, без разрывов и скачков, – идеи, которая так глубоко укоренилась в нашем сознании, что нам так трудно от нее отказаться, очень соблазнительной выглядит идея о том, что Алиса или ее прибор влияет на Боба каким-то неуловимым образом, который остается незаметным для физиков начала XXI века. Или что Боб влияет на Алису, в зависимости от того, кто первый делает выбор. Так как эта хронология зависит от произвольного выбора системы отсчета, хочется вообразить, что есть какая-то привилегированная система отсчета, которая определяет раз и навсегда порядок всех интересующих нас событий. Мы видели, что эксперимент может установить нижнюю границу скорости такого воздействия (см. главу 9) Но разве не может быть так, что очевидная нелокальность – это следствие воздействия, распространяющегося непрерывно из точки в точку между Алисой и Бобом с гигантской скоростью, определенной в привилегированной системе отсчета, которая пока неизвестна физикам? Согласно этой гипотезе, если воздействие приходит вовремя, то наблюдаемые корреляции будут как раз такими, какие описывает квантовая теория, а если воздействие не успевает, то эти корреляции с необходимостью являются локальными, а потому не дадут нам победить в игре Белла. Такая гипотеза противоречит духу теории относительности Эйнштейна, но не противоречит никаким экспериментальным проверкам этой теории. Короче говоря, эта гипотеза мирно сосуществует с теорией относительности, так же как и нелокальные квантовые корреляции, которые позволяют нам побеждать в игре Белла.

1 ... 25 26 27 28 29 30 31 32 33 ... 36
Перейти на страницу:
На этой странице вы можете бесплатно скачать Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...