Удивительная физика - Нурбей Гулиа
Шрифт:
Интервал:
Закладка:
Маятник древних часов был поперечным – линейка с двумя грузами на концах связывалась с особой шестерней с острыми зубьями так, чтобы при одном колебании успевал проскакивать только один зубец. Этот же зубец толкал (как медведь!) маятник, не давая его колебаниям затухнуть. Таким образом скорость вращения этой шестерни непосредственно кинематически связывалась с колебаниями маятника, например, один оборот шестерни, содержащей десять зубьев, происходил за десять колебаний маятника. Если период колебаний был равен 1 секунде – то за 10 секунд. Оставалось только связать системой зубчатых колес эту шестерню со стрелкой, чтобы та вращалась в 4 320 раз медленнее, и дело сделано. Часовая стрелка или циферблат (как кому нравилось) совершали при этом полный оборот за 12 часов!
Но это были часы не очень совершенные. Точность их хода сильно зависела от величины подвешенного груза, который и вращал шестерню, и толкал таким образом маятник. Восстанавливающая сила (загляните в пример с медведем!) зависела от массы груза, «смазанности» механизма и других причин, что делало часы неточными и ненадежными.
Изобретением настоящих, точных и надежных маятниковых часов мы обязаны Христиану Гюйгенсу, который создал их в 1656 г. Вся прелесть часов Гюйгенса была в том, что маятник совершал свои колебания под действием восстанавливающей силы, зависящей только от силы тяжести, то есть постоянной (для жителей Земли, разумеется). И, как мы знаем, даже подъем на горы и спуск в шахты, а также изменение плотности воздуха из-за погоды почти не влияли на период колебаний такого маятника.
Это был обычный маятник – груз, подвешенный на стержне с возможностью изменения длины его подвеса, чаще всего обычной гайки на резьбе, что нужно для точного регулирования периода колебаний. Вся хитрость состояла в так называемом спусковом механизме, таком, который позволял бы сделать колебания маятника незатухающими, и в то же время почти не изменял бы периода его колебаний.
Спусковой механизм (рис. 100, а) состоит из спускового колеса 1, так или иначе подгруженного гирей 4 (на рисунке она свисает справа, подгружая колесо 1 по часовой стрелке), и анкера 2, связанного с маятником 3. Зубья колеса 1 толкают поочередно то левое, то правое плечо анкера 2, раскачивая маятник 3. При этом с каждым качанием проскакивает по одному зубу спускового колеса, делая таким образом частоту его вращения зависящей от периода колебаний маятника. Связать спусковое колесо со стрелками часов – часовой и новой, второй стрелкой – минутной было уже делом техники. Секундная стрелка появилась совсем в новое время, когда счет времени пошел на секунды. Наиболее точный ход часов – при малых амплитудах колебаний маятника, порядка 3 – 8 °. На рис. 100, б показаны усовершенствованные спусковое колесо и анкер реальных маятниковых часов. Видно, что в анкере закреплены по его концам так называемые палеты, изготовленные из закаленной стали или даже твердых камней, обычно агата или рубина. Длина палет регулируется так, чтобы они поочередно выходили из зацепления со спусковым колесом, и оставшаяся в зацеплении палета толкала анкер и весь маятник слева направо. Обратно же маятник возвращается сам.
Рис. 100. Спусковой механизм маятниковых часов:а – общий вид: 1 – спусковое колесо; 2 – анкер; 3 – маятник; 4 – гиря; б – спусковой механизм усовершенствованного типа
Всем хороши маятниковые часы – и точны, и несложны, но не переносят тряски и качки. Попробуйте, наклоните маятниковые часы вбок – и анкер перестает работать. Поэтому их особенно точно «выставляют» в вертикальное положение и закрепляют так.
Что ж, для башенных, напольных, настенных часов маятник очень удобен. Но людям хотелось бы «носить» время с собой – иметь карманные или наручные часы. Маятник здесь неуместен, даже смешон. И еще одна проблема – точное время очень нужно морякам для определения координат корабля в открытом море. А маятниковые часы «болеют» морской болезнью – не выносят качки. Вот в первую очередь для морских дел и были созданы часы с балансирным (или балансовым) маятником.
Мы уже говорили, что восстанавливающая сила может быть не только силой тяжести, но и силой упругости. Вот и был заменен маятник, фактически вращающийся на ограниченный угол в 3 – 8°, массивным кольцом-маховичком, поворачивающимся уже на 270—300°. А так как в кольце этом, или балансе, силы тяжести уравновешены, в отличие от маятника, то в положение равновесия его приводила тоненькая спиральная пружинка, называемая волоском. Вот мы и получили устройство, изображенное на рис. 101, а. То же спусковое колесо 1, тот же анкер 2, но вместо маятника колеблется баланс 4, подпружиненный пружинкой-волоском 3. На рис. 101, б показана более усовершенствованная схема спускового механизма с балансом. Здесь палеты ударяют по несколько видоизмененным зубьям колеса и толкают баланс, подпружиненный волоском. Период колебаний баланса регулируется изменением длины закрепления этого волоска, что можно видеть, если снять крышку, например, с механического будильника. А кроме того, вместо громоздких гирь часы стали снабжаться энергией от компактной заводной пружины-двигателя.
Рис. 101. Спусковое устройство часов с балансом:а – общий вид: 1 – спусковое колесо; 2 – анкер; 3 – пружинка-волосок; 4 – баланс; б – усовершенствованная схема спускового механизма с балансом
В результате получили механизм, изображенный в «развернутом виде» на рис. 102. Это современные механические часы, не уступающие своего места часам электронным. Одно время, в самом конце XX в., казалось, что механическим часам пора «на пенсию». Но оказалось, что они стали даже еще престижней электронных. Особенно с самоподзаводом (очередным «вечным двигателем», работающим от движения руки), календарем и прочими удобствами.
Забегая вперед, скажем, что и в кварцевых, и в чисто электронных часах все равно «эталоном» времени являются колебания. Разница лишь в том, как эти колебания преобразуются и «выводятся» на стрелочный или цифровой индикатор.
Рис. 102. Механизм современных механических часовЧто слышат люди, киты и вампиры?
Колебания не обязательно возникают только там, где есть масса отдельно и пружина отдельно. Если пружина достаточно массивна, то она может вызывать колебания и сама, стоит только их возбудить. Если резко толкнуть пружину, так, как показано на рис. 103, то она придет в колебательное движение, по ней как бы пойдут волны. Такие волны, которые идут вдоль упругого тела, вызывая его попеременное сжатие и растяжение, называются продольными.
Рис. 103. Продольные волны в пружинеБывают еще волны поперечные, или стоячие. Если бросить камень в воду, то от него пойдут именно волны поперечные (рис. 104). Очень наглядно образуется поперечная волна на слабо натянутой веревке, если ее дернуть поперек (рис. 105). Это покажется странным, но именно такой волной является волна световая, да и радиоволна. Об этом мы поговорим попозже, а пока посмотрим, что это за волны – звуковые.
Рис. 104. Стоячие волны на поверхности воды Рис. 105. Стоячие волны на веревке Рис. 106. Продольные волны в столбе воздухаВоздух – та же пружина, только без отдельных витков, непрерывная. И если мы будем поступать с воздухом так же, как и с пружиной на рис. 103, то он также придет в колебательное движение (рис. 106). Воздух имеет достаточную массу – около 1,3 кг/м3, он упруг – под поршнем ведет себя как настоящая пружина. Поэтому и по нему пойдут продольные волны, как и по пружине.
Частота колебаний, измеряемая в герцах, это величина, обратная периоду. Если период колебаний маятника 2 секунды (помните маятник метровой длины?), то его частота – 1/2 Гц. Так вот, если колебания воздуха совершаются с частотой от 16 до 20 000 Гц, то это воспринимается как звук. Только очень большие «слухачи» могут услышать весь этот интервал частот. Обычно слышат от 20 до 18 000 Гц; 20 Гц – это, пожалуй, раскаты грома, а 18 000 – тончайший комариный писк.
У пожилых людей верхний порог слышимости иногда понижается до 6 000 Гц; напротив, некоторые дети слышат до 22 000 Гц. А собаки могут услышать и до 38 000 Гц, т. е. идут, пожалуй, наравне с грудными младенцами.
Еще дальше зашли в этой способности летучие мыши (некоторых из них называют «вампирами»). Они могут издавать и воспринимать звуки от 25—50 до 210 000 Гц – это самое большее, на что способны животные (рис. 107).
Рис. 107. Летучие мыши охотятся за насекомыми с помощью ультразвукаИспользуют они эту способность для «эхолокации» при полетах в темноте. Женщины не зря боятся летучих мышей – густые, пышные женские волосы являются как бы «звуковой ямой» для звука, он от них не отражается. И обманутая летучая мышь может, не разобравшись, вцепиться в волосы.