Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Радиотехника » Ваш радиоприемник - Рудольф Сворень

Ваш радиоприемник - Рудольф Сворень

Читать онлайн Ваш радиоприемник - Рудольф Сворень

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 48
Перейти на страницу:

Как видите, с подобным переселением никто не торопится. Дело в том, что каждый из диапазонов имеет свои особенности, свои достоинства и специфические недостатки. Многие из этих особенностей связаны с условиями распространения радиоволн различной длины.

Когда-то мы отметили, что радиоволны, покинув передающую антенну, свободно перемещаются в пространстве и в итоге переносят какую-то часть энергии к антенне радиоприемника. Однако если внимательно проследить за процессом распространения радиоволн, то окажется, что перемещаются они не так-то уж свободно и, во всяком случае, встречают на своем пути множество разных, иногда непреодолимых препятствий.

Прежде всего зафиксируем такой очевидный факт — радиовещательный передатчик находится на Земле. На Земле находится также и подавляющее большинство радиослушателей. Это значит, что радиоволны могли бы проделать свой долгий путь над самой земной поверхностью. И они, конечно, легко проделали бы этот путь, если бы… если бы Земля не имела форму шара.

…Теплый летний вечер где-нибудь на черноморском побережье. Темнеет, в береговых поселках зажигаются огни, появляются огоньки и в море. Вот видно, как вышел из порта огромный залитый электрическим светом лайнер и, подмаргивая красными и зелеными глазками, направился в открытое море. Все дальше уходит от берега яркое световое пятно и вдруг резко исчезает из виду, как будто лайнер нырнул под воду. Все понятно — корабль скрылся за линией горизонта и его свет не доходит до берега. Не доходит потому, что Земля — шар, а световые лучи не искривляют своего пути, не хотят огибать кривизну земной поверхности.

Но всегда ли так прямолинейны световые лучи? Поставьте перед электрической лампочкой какой-нибудь небольшой предмет, скажем, иголку, и вы не обнаружите на стене никакой тени. Свет обошел препятствие, обогнул его. Это явление называется диффракцией. Нетрудно догадаться, что световые волны диффрагируют, огибают препятствие только в том случае, когда оно достаточно мало (в действительности в нашем примере происходят более сложные явления, однако диффракция световых лучей играет в них ведущую роль).

Но что значит маленькое препятствие? В сравнении с чем маленькое? Человек может легко перешагнуть через толстое бревно, а для муравья такое бревно кажется огромной горой. Кто знает, может быть, за штурм подобного препятствия в муравейнике можно получить звание муравья-альпиниста! Одним словом, понятия большой или маленький имеют смысл лишь тогда, когда известно, с чем можно сравнивать.

Когда мы говорим, что волны, в нашем примере световые, огибают небольшие препятствия, то сравниваем размеры этих препятствий с длиной волны. Точных соотношений мы разбирать не можем и ограничимся лишь самым общим замечанием — диффракция наблюдается, когда препятствие соизмеримо с длиной волны. В отношении радиоволн это выглядит примерно так — длинные волны сравнительно хорошо огибают земной шар, радиус кривизны которого около 6000 километров. Практически длинные волны при достаточной мощности передатчика могут легко пройти с одного конца Земли на другой. Еще каких-нибудь 40–50 лет тому назад линии радиосвязи между континентами работали только на длинных и сверхдлинных волнах.

* * *

ЭЛЕКТРОННАЯ «ЛУПА»

Даже на сравнительно небольшом расстоянии от глаз механизм ручных часов похож на обычный полтинник — мелкие детали почти не видны и сложная машина кажется сплошным серебряным кружком. Но вот часовщик одевает на глаз лупу — нехитрый прибор с увеличительным стеклышком — и ему уже заметны не только маленькие шестеренки, не только отдельные их зубцы, но даже царапины и зазубрины на каждом зубце.

Можно довольно просто ввести в приемник «электронную лампу», которая позволит внимательно рассматривать самые небольшие участки коротковолнового диапазона, а точнее, позволит вести на этих участках плавную настройку. В отличие от обычной растянутой настройки электронная лупа не связана с каким-нибудь определенным участком, она обслуживает весь диапазон. С помощью ручки основной настройки вы выбираете нужный участок, а затем уже внимательно просматриваете его, «вооружившись лупой».

Для того чтобы сделать такую «лупу», можно закрепить на шасси воздушный подстроечный конденсатор небольшой емкости (20–30 пф), ось его вывести наружу (например, на боковую стенку) и снабдить ручкой. Конденсатор подключается к части катушки гетеродинного контура (рис. 31, в) или ко всей катушке, но уже через сопротивление 5—50 ком. Подбирая это сопротивление, легко установить нужную степень «растяжки».

Вместо конденсатора в «электронной лупе» можно использовать любую катушку, которая содержит 50—100 витков и имеет подвижный сердечник (рис. 31, г).

* * *

Для средних волн Земля представляет уже значительно большее препятствие. Они обычно на несколько десятков, реже — на несколько сот километров уходят за линию горизонта. Что же касается коротких и особенно ультракоротких волн, то на этих диапазонах наблюдается совсем незначительное огибание нашего «шарика». Кажется, уже настал момент сделать вывод — радиопередачу на большие расстояния можно осуществить только на длинных волнах. Однако не будем торопиться. До сих пор мы вели разговор только о Земле. Теперь поговорим о Солнце.

Солнечные лучи, попав на Землю, выполняют здесь гигантскую работу. Нефть, уголь, сложные химические соединения, расплавленные льды, грозовые тучи, наконец, сама жизнь, бессчетные виды растений, насекомых, животных — во всем этом доля солнечного труда огромна. Нужно сказать, что, активно участвуя в самых разнообразных процессах, Солнце пользуется сравнительно небольшим арсеналом методов воздействия на вещество. Один из таких методов — ионизация.

Различные виды солнечного излучения, врываясь в атомы и молекулы, выбивают из них электроны, а в результате появляются пары электрических зарядов: электрон — положительный ион. Ионизированные газы и жидкости — это проводники тока, так как электрические заряды в них не связаны и могут перемещаться в пространстве. Ионизируя сильно разреженные газы на большой высоте от Земли, солнечные излучения создают так называемую ионосферу — несколько слоев, несколько расположенных на высоте 50—200 км невидимых сферических оболочек со сравнительно большой плотностью свободных зарядов — тысячи и даже миллионы на кубический сантиметр. Эти ионизированные слон довольно хорошо отражают радиоволны, подобно тому, как зеркало отражает свет.

Радиоволны, излучаемые передатчиком, распространяются не только над поверхностью Земли. Значительная их часть уходит вверх, «в небо», и, отразившись от ионосферы, вновь возвращается на Землю (рис. 30).

Рис. 30

Иногда происходит даже несколько отражений, и радиоволна проходит зигзагообразный путь между Землей и ионосферой. Отраженный радиолуч может покрывать огромные расстояния, например, легко добираться с Северного полюса на Южный и даже, обогнув Землю, вновь возвратиться к месту передачи. Самое интересное, что отраженный луч на своем пути почти не теряет энергии, так как мало соприкасается с Землей. Это позволяет устанавливать дальнюю связь с помощью передатчиков очень небольшой мощности.

По-разному относится Земля к радиоволнам различной длины, по-разному относится к ним и ионосфера. Так, слой, от которого отражаются средние волны, «работает» только в ночное время, когда солнечная активность резко снижается. Поэтому и дальние станции на средневолновом диапазоне слышны только с наступлением темноты. Коротковолновый участок коротковолнового диапазона, наоборот, в основном прослушивается в дневное и утреннее время, а волны длиннее 30–40 м лучше слышны ночью и вечером. Кроме того, состояние ионосферы, а значит и ее отражающие способности, сильно зависят и от времени года. Зимой улучшается прохождение средних волн, летом — самых коротких — 10–30 м. Но и это еще не все — на состояние ионосферы, а значит и на условия распространения радиоволн влияет любое изменение солнечной активности, в том числе и одиннадцатилетние циклы. Так, в частности, несколько лет тому назад наблюдалось сильное отражение от ионосферы даже ультракоротких волн, хотя обычно они «протыкают» ионизированные слои насквозь и на Землю не возвращаются. Одним словом ионосфера — не какая-то застывшая масса. Высота ее слоев, их плотность, отражающие способности для разных длин волн сложным образом меняются и при этом, естественно, меняются и условия дальнего распространения радиоволн.

Практический вывод отсюда можно сделать очень простой — не нужно требовать от приемника большего, чем он может дать. Даже самый отличный приемник ничего не «поймает» в том участке диапазона, где в длинный момент нет прохождения, где из-за плохих условий распространения радиоволны вообще не уходят далеко от передающей станции. Но, конечно, не нужно сетовать на то, что в эфире «ну совсем нет станций!» Часто этим оправдывают «лодыря» — приемник, который просто-напросто обладает слабой чувствительностью, то есть недостаточно усиливает слабые радиосигналы.

1 ... 18 19 20 21 22 23 24 25 26 ... 48
Перейти на страницу:
На этой странице вы можете бесплатно скачать Ваш радиоприемник - Рудольф Сворень торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉