Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац

Читать онлайн Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 45
Перейти на страницу:

Что происходит с нашими несчастными влюбленными? Как любовь их поглощает и уходит с течением времени? Вот где дифференциальное исчисление приходит на помощь. Составив уравнения, обобщающие усиление и ослабление чувств Ромео и Джульетты, а затем решив их, мы сможем предсказать ход отношений этой пары. Окончательным прогнозом для нее будет трагически бесконечный цикл любви и ненависти. По крайней мере четверть этого времени у них будет взаимная любовь.

Чтобы прийти к такому выводу, я предположил, что поведение Ромео может быть смоделировано с помощью дифференциального уравнения

которое описывает, как его любовь (R) изменяется в следующее мгновение (dt). Согласно этому уравнению, количество изменений (dR) прямо пропорционально (с коэффициентом пропорциональности a) любви Джульетты (J). Данная зависимость отражает то, что мы уже знаем: любовь Ромео усиливается, когда Джульетта любит его, но это также говорит о том, что любовь Ромео растет прямо пропорционально тому, насколько Джульетта его любит. Это предположение линейной зависимости эмоционально неправдоподобно, но оно позволяет значительно упростить решение уравнения.

Напротив, поведение Джульетты можно смоделировать с помощью уравнения

Отрицательный знак перед постоянной b отражает то, что ее любовь остывает, когда любовь Ромео усиливается.

Единственное, что еще осталось определить, — их изначальные чувства (то есть значения R и J в момент времени t = 0). После этого все необходимые параметры будут заданы. Мы можем использовать компьютер, чтобы медленно, шаг за шагом двигаться вперед, изменяя значения R и J в соответствии с описанными выше дифференциальными уравнениями. На самом деле с помощью основной теоремы интегрального исчисления мы можем найти решение аналитически. Поскольку модель простая, интегральное исчисление выдает пару исчерпывающих формул, которые говорят нам, сколько Ромео и Джульетта будут любить (или ненавидеть) друг друга в любой момент времени в будущем.

Представленные выше дифференциальные уравнения должны быть знакомы студентам-физикам: Ромео и Джульетта ведут себя как простые гармонические осцилляторы. Таким образом, модель предсказывает, что функции R(t) и J(t), описывающие изменение их отношений во времени, будут синусоидами, каждая из них возрастающая и убывающая, но максимальные значения у них не совпадают.

Модель можно сделать более реалистичной разными путями. Например, Ромео может реагировать не только на чувства Джульетты, но и на свои собственные. А вдруг он из тех парней, которые настолько боятся, что их бросят, что станет остужать свои чувства. Или относится к другому типу парней, которые обожают страдать — именно за это он ее и любит.

Добавьте к этим сценариям еще два варианта поведения Ромео: он отвечает на привязанность Джульетты либо усилением, либо ослаблением собственной привязанности — и увидите, что в любовных отношениях существуют четыре различных стиля поведения. Мои студенты и студенты группы Питера Кристофера из Вустерского политехнического института предложили назвать представителей этих типов так: Отшельник или Злобный Мизантроп для того Ромео, который охлаждает свои чувства и отстраняется от Джульетты, и Нарциссический Болван и Флиртующий Финк для того, который разогревает свой пыл, но отвергается Джульеттой. (Вы можете придумать собственные имена для всех этих типов).

Хотя приведенные примеры фантастические, описывающие их типы уравнений весьма содержательны. Они представляют собой наиболее мощные инструменты из когда-либо созданных человечеством для осмысления материального мира. Сэр Исаак Ньютон использовал дифференциальные уравнения для открытия тайны движения планет. С помощью этих уравнений он объединил земные и небесные сферы, показав, что и к тем и к другим применимы одинаковые законы движения.

Спустя почти 350 лет после Ньютона человечество пришло к пониманию того, что законы физики всегда выражаются на языке дифференциальных уравнений. Это верно для уравнений, описывающих потоки тепла, воздуха и воды, для законов электричества и магнетизма, даже для атома, где царит квантовая механика.

Во всех случаях теоретическая физика должна найти правильные дифференциальные уравнения и решить их. Когда Ньютон обнаружил этот ключ к тайнам Вселенной и понял его великую значимость, он опубликовал его в виде латинской анаграммы. В вольном переводе она звучит так: «Полезно решать дифференциальные уравнения»75.

Глупая идея описать любовные отношения с помощью дифференциальных уравнений пришла мне в голову, когда я был влюблен в первый раз и пытался понять непонятное поведение моей девушки. Это был летний роман в конце второго курса колледжа. Я очень напоминал тогда первого Ромео, а она — первую Джульетту. Цикличность наших отношений сводила меня с ума, пока я не понял, что мы оба действовали по инерции, в соответствии с простым правилом «тяни-толкай». Но к концу лета мое уравнение начало разваливаться, и я был еще более озадачен. Оказалось, произошло важное событие, которое я не учел: ее бывший возлюбленный захотел ее вернуть.

В математике мы называем такую задачу задачей о трех телах. Она заведомо неразрешима, особенно в контексте астрономии, где впервые и возникла. После того как Ньютон решил дифференциальные уравнения для задачи о двух телах (что объясняет, почему планеты движутся по эллиптическим орбитам вокруг Солнца), он обратил внимание на задачу о трех телах для Солнца, Земли и Луны. Ни он, ни другие ученые так и не смогли ее решить. Позже выяснилось, что задача о трех телах содержит семена хаоса76, то есть в долгосрочной перспективе их поведение непредсказуемо.

Ньютон ничего не знал о динамике хаоса, но, по словам его друга Эдмунда Галлея[29], пожаловался, что задача о трех телах «вызывает головную боль77 и так часто не дает ему спать, что он больше не будет об этом думать».

Здесь я с вами, сэр Исаак.

21. Выйди на свет[30]

Господин Дикурцио был моим наставником в средней школе — хмурый и требовательный, склонный к сарказму человек, носивший скучного вида очки в черной оправе. Словом, симпатяга. Но я заметил его безумную страсть к физике.

Однажды я рассказал ему, что прочитал биографию Эйнштейна. В ней говорилось, что во время учебы в колледже Эйнштейн был сильно поражен чем-то под названием «уравнения Максвелла для электричества и магнетизма»; и я заявил, что не могу ждать, пока начну достаточно разбираться в математике, чтобы узнать, что они собой представляют.

Это произошло во время ужина в школе-интернате. За большим столом сидели еще несколько студентов, жена учителя и две его дочери; господин Дикурцио раскладывал картофельное пюре по тарелкам. При упоминании об уравнениях Максвелла он бросил ложку, схватил бумажную салфетку и начал писать на ней загадочные символы, точки и кресты, перевернутые треугольники, E и В со стрелками над ними, и вдруг, как мне показалось, он заговорил на нечеловеческом языке: «Ротор ротора — это градиент дивергенции минус квадрат дельты...»

Что за абракадабру он бормотал? Теперь-то я понимаю, что он давал объяснения в терминах векторного исчисления78 — раздела математики, описывающего все находящиеся вокруг нас невидимые поля. Вспомните магнитное поле, поворачивающее стрелку компаса на север, гравитационное поле, притягивающее ваш стул к полу, или микроволновое поле, которое готовит ваш ужин.

Наибольшие достижения векторного исчисления лежат в том сумеречном мире, где математика сталкивается с реальностью. В самом деле, история Джеймса Максвелла и его уравнений показывает один из сверхъес­тественных случаев несомненной эффективности математики. Так или иначе, перетасовав несколько символов, Максвелл обнаружил, что такое свет79.

Чтобы осознать значимость его открытия и получить общее представление о векторном исчислении, давайте начнем со слова «вектор». Оно происходит от латинского корня vehere, «осуществлять», который также дает нам такие слова, как «транспортное средство» (vehicle) и «лента конвейера» (conveyor belt). Для эпидемиологов вектор является носителем возбудителя, подобно комару, передающему малярию через кровь. Для математика вектор (по крайней мере в своей простейшей форме) — это шаг, который переносит вас из одного места в другое.

Вспомните одну из схем для начинающих танцоров бальных танцев, покрытую стрелками, указывающими, как, танцуя румбу, ставить правую ногу, а затем левую:

Эти стрелки и есть векторы. Они содержат два вида данных: направление (в каком направлении переставлять ногу) и величину (на какое расстояние ее нужно переместить). Все векторы имеют такую двойственность.

1 ... 18 19 20 21 22 23 24 25 26 ... 45
Перейти на страницу:
На этой странице вы можете бесплатно скачать Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...