Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть - Димитри Маекс
Шрифт:
Интервал:
Закладка:
Гауса больше всего интересовали причины возникновения волн. Большинство людей полагали, что они вызываются макроэкономическими силами (ВВП, уровень безработицы и тому подобным). Гаус, напротив, был убежден, что реальные движущие силы имеют психологический характер. Он утверждал, что волны Кондратьева совпадали с так называемыми волнами беспокойства, предсказывающими изменение во вкусах, ценностях и поведении, а в ряде случаев и следовали за ними.
Для доказательства своей точки зрения Гаус собрал данные о тенденциях женской моды и обнаружил: в периоды высокого беспокойства женщины носят менее яркие цвета, более длинные юбки и кофты с высоким воротником. В периоды сравнительно низкого беспокойства цвета становятся ярче, а юбки – короче. Это позволяло ему выявить «волну беспокойства», основываясь на тех или иных колебаниях моды с течением времени.
Он обнаружил поразительную корреляцию между уровнем беспокойства и целым набором показателей, таких как количество браков, рождаемость, уровни занятости и самоубийств, а также объемом инвестиций.
Сама идея, что колебания в экономике вызваны коллективным беспокойством, может показаться интересной, однако труднодоказуемой. Данных о психологическом состоянии общества явно недостаточно, и именно поэтому Гаус решил изучать моду. Однако теперь у нас есть еще один сравнительно новый источник, содержащий огромные объемы информации о мыслях и действиях людей, – я имею в виду данные поисковых интернет-систем. Знание о том, что ищут люди и как меняются со временем их поисковые запросы, может стать барометром психологического состояния общества.
Конечно, теория Гауса еще потребует четкого подтверждения. Но мне очень нравится сама идея совмещения реальных и четких данных о потребителях с идеями, способными дать дополнительную и полезную информацию. Поэтому я внимательно изучил подход Censydiam (в меньшей степени изучая их труды и в большей – беседуя со Стивом за пивом в наших любимых антверпенских пивных). Такая информация может оказаться крайне важной. Вспомните, в предыдущей главе мы обсуждали принципы использования данных для выяснения вопроса, с какими клиентами BT имеет смысл говорить. Но мы хотели не просто найти подходящих нам людей. Мы должны были разработать убедительную маркетинговую коммуникацию, способную помочь бизнесу BT. Поэтому нам было необходимо буквально влезть под кожу британских небольших и средних компаний, чтобы понять, о чем с ними нужно разговаривать.
British Telecom – от неопределенности к точности
Чтобы по-настоящему понять клиентов BT, нам было необходимо рассмотреть со всех сторон их интеллектуальные возможности. У нас имелась точная, основанная на фактических данных информация, позволявшая провести их сегментацию (мы говорили об этом в прошлой главе). Теперь нам нужно было провести сегментацию, основанную на их потребностях. Для этого мы вместе с маркетологами-разработчиками принялись за работу, пригласив к участию британскую компанию Henley Centre (нынешнее название – Futures Company), специализирующуюся на аналитических исследованиях и изучении тенденций. Мы хотели найти достаточно глубокую идею, которая при этом могла бы быть привязана к имевшимся у нас данным. Это позволило бы нам не только создать сообщение, привлекательное для малых и средних компаний, но и выявить, какие из них будут заинтересованы в том или ином типе сообщения.
Наш подход состоял из трех этапов.
– Мы выделили все небольшие компании и создали исчерпывающий список их потребностей, которые BT потенциально могла бы удовлетворить.
– Мы выявили, какие из этих потребностей представляются малым и средним клиентам наиболее важными.
– Нам нужно было разобраться, существуют ли различные типы небольших компаний, для которых эти потребности могут различаться. Например, имеет ли сервисная компания с годовыми доходами в 5 миллионов долларов такие же потребности с точки зрения коммуникации, как компания с таким же оборотом, но занимающаяся производством?
Мы начали с первого этапа, и по итогам работы у нас сформировался список.
Новые каналы и рынки
• Выход на новые географические рынки
• Развитие новых каналов дистрибуции
• Вывод на рынок новых продуктов и услуг
Концентрация на клиентах
• Рост клиентской базы
• Улучшение сервиса и коммуникации
• Повышение доходов от существующих клиентов
Эффективность работы
• Улучшение процессов управления поставками и запасами
• Улучшение процессов закупки
• Улучшение управления внутренними процессами
•
Обеспечение последовательности в наиболее важных системах и процессах
Управление бизнесом
• Снижение усилий на выстраивание соответствия административным правилам и регулированию
• Улучшение процессов управления компанией (в том числе финансового)
• Улучшение управления информационными технологиями
Эффективность работы персонала
• Обмен информацией с коллегами
• Обеспечение более гибких условий работы (в частности, работа на дому)
• Возможность постоянной работы за пределами офиса
Безопасность
• Обеспечение защиты бизнеса от преступлений и других рисков типа онлайнового мошенничества, компьютерных вирусов и взломов систем
Так как мы посчитали невозможным сконцентрироваться на всех семнадцати пунктах, наша вторая задача состояла в том, чтобы выяснить, какие из них считались нашей аудиторией наиболее важными. Это было сделано с помощью количественных исследований, в основном интервью крупной выборки из небольших компаний (в ходе которого мы спрашивали, какие потребности они считают наиболее важными). Представленная ниже в виде диаграммы информация наглядно показывает, что наши клиенты считали наиболее важным.
В итоге мы хотели выявить различные сегменты, у участников которых имелись свои уникальные приоритеты с точки зрения потребностей. Для этого использовался кластерный анализ – моя любимая статистическая процедура. Вы позволяете данным самим говорить за себя и самостоятельно формировать различные группы клиентов. После этого вам необходимо принять здравое суждение о том, насколько осмысленно и правильно объединять людей в такую группу. Именно комбинация данных и их интерпретации делает эту процедуру столь забавной – ведь, по сути, это наполовину наука и наполовину искусство.
Предположим, мы проинтервьюировали представителей тысяч небольших и средних компаний, задав им вопрос о единственно важной потребности – эффективном управлении цепочкой поставок (которую нужно было оценить по шкале от 1 до 10). Их ответы (представленные точками на иллюстрации ниже) выглядели примерно так, как представлено ниже.