Категории
Самые читаемые книги
ЧитаемОнлайн » Бизнес » Управление, подбор персонала » Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит

Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит

Читать онлайн Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 173
Перейти на страницу:

Сделайте еще одну паузу и подумайте. Если бы вы играли в эту игру в роли игрока Б, приняли бы один цент?

Ультимативная игра стала объектом многочисленных экспериментов[18]. Как правило, в ходе таких экспериментов в одном месте собирают около двух десятков человек и в произвольном порядке разбивают их по парам. В каждой паре распределяются роли игрока, делающего предложение, и игрока, отвечающего на предложение. Новые пары тоже формируются в случайном порядке, и игра начинается снова. В большинстве случаев игроки не знают, с кем они будут играть в очередном раунде. Благодаря такому подходу экспериментатор получает несколько наборов данных, работая с одной группой участников эксперимента на протяжении одного сеанса, но при этом отсутствует возможность формирования устойчивых связей, которые могут повлиять на поведение участников эксперимента. В рамках этой общей схемы создаются различные варианты условий, с тем чтобы изучить их влияние на конечный результат.

ПРОСТАЯ ЗАДАЧА ДЛЯ ТРЕНИРОВКИ МЫШЛЕНИЯ: ДРУГОЙ ВАРИАНТ ИГРЫ В УЛЬТИМАТУМ

В этом варианте ультимативной игры игрок А делает предложение игроку Б, как разделить 100 долларов. Если Б принимает предложение А, они делят деньги и игра заканчивается. Но если Б говорит «нет», А должен решить, делать ли еще одно предложение. Каждое очередное предложение игрока А должно быть более щедрым. Игра заканчивается, когда игрок Б принимает предложение или когда игрок А прекращает делать предложения. Как вы думаете, каким будет итог этой игры?

В данном случае можем предположить, что игрок А будет делать предложения до тех пор, пока не предложит игроку Б 99 долларов, оставив себе 1 доллар. Таким образом, согласно древовидной логике обратных рассуждений, игрок Б получит почти все деньги. Если бы вы были игроком Б, стали бы вы держаться до того момента, когда А предложит вам поделить деньги по принципу 99:1? Советуем не делать этого.

По всей вероятности, ваш собственный анализ того, как вы действовали бы в роли первого и второго игроков, дает вам основания предположить, что в реальной жизни результаты этой игры должны отличаться от представленных теоретических прогнозов. И они действительно отличаются, причем во многих случаях существенно. Игроки, которые делают предложение, делят деньги по-разному, но один цент, один доллар или любую другую сумму ниже 10 процентов от суммы, стоящей на кону, называют крайне редко. Средняя сумма (половина игроков предлагают больше этой суммы, половина – меньше) находится в диапазоне от 40 до 50 процентов; во многих экспериментах чаще всего встречается деление 50:50. Игроки, отвечающие на предложения, в половине случаев отвергают те из них, которые обеспечивают им менее 20 процентов от общей суммы.

Иррациональность и рациональность заботы о других

Почему игроки предлагают достаточно большую долю от общей суммы тем, кто принимает предложения? Здесь вероятны три причины. Во-первых, не исключено, что игрок, делающий предложение, не владеет методом обратных рассуждений. Во-вторых, у предлагающих игроков могут быть и другие мотивы, отличные от сугубо эгоистичного желания получить по максимуму: например, альтруистические побуждения или чувство справедливости. В-третьих, они могут опасаться, что игроки, которым они делают предложение, откажутся от предложенной суммы, если она будет слишком маленькой.

Первая причина маловероятна, поскольку логика обратных рассуждений в этой игре совсем нетрудная. В более сложных ситуациях игроки не всегда в состоянии корректно выполнить все необходимые расчеты, особенно если они новички в этой игре (как мы уже видели в игре с флажками). Но ультимативная игра достаточно проста даже для новичков. Следовательно, этот феномен можно объяснить второй причиной, третьей причиной или их сочетанием.

Первые результаты экспериментов с ультимативной игрой свидетельствовали в пользу третьей причины. Профессор Гарвардского университета Эл Рот и его коллеги пришли к выводу, что в той схеме формирования порога отказов, которая преобладала в их группе испытуемых, предлагающие игроки выбирали свои предложения таким образом, чтобы достичь оптимального соотношения перспективы получения большей доли для себя и риска отказа со стороны отвечающего игрока. Это говорит о наличии незаурядной традиционной рациональности у игроков, делающих предложения.

Однако более поздние исследования, посвященные различиям между второй и третьей возможностями, позволили сделать другие выводы. Для того чтобы разграничить альтруизм и стратегию, были проведены эксперименты с использованием одного из вариантов ультимативной игры – игры в диктатора. В этой игре первый игрок диктует, как должна быть разделена имеющаяся сумма денег; другой должен принять это предложение, каким бы оно ни было. В игре в диктатора предлагающие игроки в среднем отдают существенно меньше, чем в обычной ультимативной игре, но все же они отдают гораздо больше ноля. Следовательно, доля истины есть в обоих объяснениях: поведение предлагающего игрока в ультимативной игре обусловлено как щедростью, так и стратегией.

Однако чем именно вызвана эта щедрость – альтруизмом или соображениями справедливости? Оба объяснения – разные аспекты того, что можно было бы назвать свойственной людям заботой о других. Понять разницу между ними позволяет такое исследование. В эксперименте, который проводится по обычной схеме, после формирования пар роли предлагающего и отвечающего игроков распределяются одним из методов случайного выбора, например подбрасыванием монеты. Благодаря этому у игроков может возникнуть ощущение равенства или справедливости. Для того чтобы исключить этот элемент, роли распределяются посредством предварительного испытания, такого как тест на общий уровень знаний. Победитель становится игроком, который будет делать предложения, воспринимая это как должное, что приводит к снижению предлагаемых сумм в среднем на 10 процентов. Тем не менее предложения по-прежнему остаются гораздо больше ноля, а это говорит о том, что в рассуждениях предлагающих игроков присутствует элемент альтруизма. Не забывайте о том, что они не знакомы лично с отвечающими игроками, поэтому здесь речь идет об альтруизме вообще, а не о заботе о благополучии конкретного человека.

Возможен и третий вариант индивидуальных предпочтений: игрок, который делает предложения, определяя размер предлагаемой суммы, может руководствоваться чувством стыда. Джейсон Дана из Пенсильванского университета, Дейлиен Кейн из Школы менеджмента Йельского университета и Робин Доуз из Университета Карнеги-Меллона провели эксперимент со следующим вариантом игры в диктатора[19]. Диктатору предлагают выделить другому игроку 10 долларов. После того как эта сумма выделена, но прежде, чем она уйдет к другому игроку, диктатору делают такое предложение: он может получить 9 долларов, другой игрок не получит ничего, но он даже не узнает, что принимал участие в эксперименте. Большинство диктаторов принимают это предложение. Следовательно, они готовы отдать один доллар за то, чтобы другой игрок не узнал об их жадности. (Альтруист предпочел бы оставить себе 9 долларов и отдать другому игроку 1 доллар, а не оставлять себе 9 долларов при условии, что другой человек не узнает об этом.) Даже если бы диктатору предложили 3 доллара, он все равно взял бы эти деньги, лишь бы другой игрок оставался в неведении. Это напоминает ситуацию, когда человек готов перейти на другую сторону улицы, лишь бы не подавать милостыню нищему.

1 ... 16 17 18 19 20 21 22 23 24 ... 173
Перейти на страницу:
На этой странице вы можете бесплатно скачать Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...