Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ФУ) - БСЭ БСЭ

Большая Советская Энциклопедия (ФУ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ФУ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 37
Перейти на страницу:

     (2)

(где K (t , s ) — ограниченная функция — ядро А ) — непрерывен, в то время как определённый на подпространстве C1 (a , b ) Ì L2 (a , b ) оператор дифференцирования

     (3)

является разрывным (вообще, характерной особенностью разрывных операторов является то, что они не определены на всём пространстве).

  Непрерывный оператор A : X ® Y , где X , Y — банаховы пространства, характеризуется тем, что

,

поэтому его называют также ограниченным. Совокупность всех ограниченных операторов  (X , Y ) относительно обычных алгебраических операций образует банахово пространство с нормой ||A ||. Свойства , если  для каждого x Î X ], относительно которой шар, т. е. множество точек x Î Х таких, что ||x || £ r , уже будет компактным (такого эффекта никогда не будет в бесконечномерном пространстве относительно топологии, порождаемой нормой). Это позволяет более детально изучить ряд геометрических вопросов для множеств из X' , например установить структуру произвольного компактного выпуклого множества как замкнутой оболочки своих крайних точек (теорема Крейна — Мильмана).

  Важной задачей Ф. а. является отыскание общего вида функционалов для конкретных пространств. В ряде случаев (помимо гильбертова пространства) это удаётся сделать, например (lp )¢, p > 1, состоит из функций вида åxj ej , где , . Однако для большинства банаховых (и в особенности линейных топологических) пространств функционалы будут элементами новой природы, не конструирующимися просто средствами классического анализа. Так, например, при фиксированных t0 и m на пространстве D () определён функционал . В случае m = 0 его ещё можно записать «классическим» образом — при помощи интеграла, однако при m ³ 1 это уже невозможно. Элементы из (D ())¢ называются обобщёнными функциями (распределениями). Обобщённые функции как элементы сопряжённого пространства можно строить и тогда, когда D () заменено другим пространством Ф, состоящим как из бесконечно, так и конечное число раз дифференцируемых функций; при этом существенную роль играют тройки пространств Ф' É Н É Ф, где Н — исходное гильбертово пространство, а Ф — линейное топологическое (в частности, гильбертово с др. скалярным произведением) пространство, например

Ф = Wl 2 (T ).

  Дифференциальный оператор D , фигурирующий в (3), будет непрерывным, если его понимать действующим в L2 [a , b ] из пространства C1 [a , b ], снабженного нормой ,  Однако для многих задач, и прежде всего для спектральной теории, такие дифференциальные операторы необходимо интерпретировать как действующие в одном и том же пространстве. Эти и другие близкие задачи привели к построению общей теории неограниченных, в частности неограниченных самосопряжённых, и эрмитовых операторов.

  4. Специальные классы операторов. Спектральная теория. Многие задачи приводят к необходимости изучать разрешимость уравнения вида Cx = y , где С — некоторый оператор, у Î Y — заданный, а x Î Х — искомый векторы. Например, если Х = Y = L2 (а , b ), С = ЕА , где А — оператор из (2), а Е — тождественный оператор, то получается интегральное уравнение Фредгольма 2-го рода; если С — дифференциальный оператор, то получается дифференциальное уравнение, и т.п. Однако здесь нельзя рассчитывать на достаточно полную аналогию с линейной алгеброй, не ограничивая класс рассматриваемых операторов. Одним из важнейших классов операторов, наиболее близких к конечномерному случаю, являются компактные (вполне непрерывные) операторы, характеризующиеся тем, что переводят каждое ограниченное множество из Х в множество из Y , замыкание которого компактно [таков, например, оператор А из (2)]. Для компактных операторов построена теория разрешимости уравнения xAx = у , вполне аналогичная конечномерному случаю (и содержащая, в частности, теорию упомянутых интегральных уравнений) (Ф. Рис).

  В разнообразных задачах математической физики возникает т. н. задача на собственные значения : для некоторого оператора А : Х ® Х требуется выяснить возможность нахождения решения j ¹ 0 (собственного вектора ) уравнения А j = lj при некотором l Î lj xj ej ,     (4)

где lj , — собственное значение, отвечающее ej . Для конечномерного Х вопрос о таком представлении полностью выяснен, при этом в случае кратных собственных значений для получения базиса в Х нужно, вообще говоря, добавить к собственным т. н. присоединённые векторы. Набор SpA собственных значений в этом случае называется спектром А .

  Первое перенесение этой картины на бесконечномерный случай было дано для интегральных операторов типа А из (2) с симметричным ядром [т. е. K (t , s ) = K (s , t ) и действительно] (Д. Гильберт). Затем подобная теория была развита для общих компактных самосопряжённых операторов в гильбертовом пространстве. Однако при переходе к простейшим некомпактным операторам возникли трудности, связанные с. самим определением спектра. Так, ограниченный оператор в L2 [a , b ]

(Tx )(t ) = tx (t )    (5)

не имеет собственных значений. Поэтому определение спектра было пересмотрено, обобщено и выглядит сейчас следующим образом.

  Пусть Х — банахово пространство, А Î  — многочлен, то f (A ) =  (степень оператора понимается как последовательное его применение). Однако если f (z ) — аналитическая функция, то так прямо понимать f (A ) уже не всегда возможно; в этом случае f (A ) определяется следующей формулой, если f (z ) аналитична в окрестности SpA, а Г — контур, охватывающий SpA и лежащий в области аналитичности f (z ):

.     (6)

  При этом алгебраические операции над функциями переходят в аналогичные операции над операторами [т. е. отображение f (z ) ® f (A ) — гомоморфизм]. Эти конструкции не дают возможности выяснить, например, вопросы полноты собственных и присоединённых векторов для общих операторов, однако для самосопряжённых операторов, представляющих основной интерес, например, для квантовой механики, подобная теория полностью разработана.

  Пусть Н — гильбертово пространство. Ограниченный оператор А : Н ® Н называется самосопряжённым, если (Ax , у ) = (x , Ау ) (в случае неограниченного А определение более сложно). Если Н n -мерно, то в нём существует ортонормированный базис собственных векторов самосопряжённого оператора А ; другими словами, имеют место разложения:

, ,     (7)

где P (lj ) — оператор проектирования (проектор) на подпространство, натянутое на все собственные векторы оператора А , отвечающие одному и тому же собственному значению lj .

  Оказывается, что эти формулы могут быть обобщены на произвольный самосопряжённый оператор из Н , только сами проекторы P (lj ) могут не существовать, поскольку могут отсутствовать и собственные векторы [таков, например, оператор Т в (5)]. В формулах (7) суммы заменяются теперь интегралами Стилтьеса по неубывающей операторнозначной функции Е (l) [которая в конечномерном случае равна ], называется разложением единицы, или спектральной (проекторной) мерой, точки роста которой совпадают со спектром Sp А . Если привлечь обобщённые функции, то формулы типа (7) сохраняются. Именно, если имеется тройка Ф' É Н É Ф , где Ф, например, ядерно, причём А переводит Ф в Ф¢ и непрерывно, то соотношения (7) имеют место, только суммы переходят в интегралы по некоторой скалярной мере, а Е (l) теперь «проектирует» Ф в Ф¢, давая векторы из Ф¢, которые будут собственными в обобщённом смысле для А с собственным значением l. Аналогичные результаты справедливы для т. н. нормальных операторов (т. е. коммутирующих со своими сопряжёнными). Например, они верны для унитарных операторов U — таких ограниченных операторов, которые отображают всё Н на всё Н и сохраняют при этом скалярное произведение. Для них спектр SpU расположен на окружности |z | = 1, вдоль которой и производится интегрирование в аналогах формул (6). См. также Спектральный анализ линейных операторов.

1 ... 16 17 18 19 20 21 22 23 24 ... 37
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (ФУ) - БСЭ БСЭ торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...