Категории
Самые читаемые книги

Основы AS/400 - Фрэнк Солтис

Читать онлайн Основы AS/400 - Фрэнк Солтис

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 107
Перейти на страницу:

Несмотря на использование больших кэшей и иерархии кэшей, большинство процессоров все равно тратят много циклов простоя, ожидая выборки из памяти. Проблема заключается в шине между процессором и основной памятью. Большая часть систем, включая ранние AS/400, имеют одну такую шину, обычно высокоскоростную, но все равно работающую медленнее самого процессора. Например, мой Intel Pentium Pro 200 МГц работает с шиной памяти 66 МГц. Это означает, что при обращении к памяти процессор простаивает по три цикла на каждый цикл шины. Легко понять, что таких циклов простоя может быть много.

В конфигурации SMP ситуация может значительно ухудшиться. Теперь одну шину памяти и одну основную память пытаются задействовать несколько процессоров. Так как в данный момент времени шина может использоваться только одним процессором, то все остальные процессоры, которым она понадобилась в этот момент, обречены ждать. А если та же шина памяти используется еще и для ввода-вывода, положение еще более усугубляется.

Эта борьба за шину памяти приводит к уменьшению производительности при добавлении к системе SMP каждого нового процессора. Например, добавление второго процессора не позволит увеличить общую производительность на 100 процентов; фактическое увеличение будет несколько меньшим из-за борьбы за память. Добавление третьего и четвертого процессора еще сильнее сократит прирост производительности на один процессор. А когда дело дойдет до восьми и более процессоров, рост производительности системы SMP может и вовсе прекратиться.

Организация памяти

Давайте проведем краткий обзор организаций памяти для многопроцессорных систем. Нас интересуют три схемы организации памяти: централизованная разделяемая память, распределенная память и распределенная разделяемая память.

Машина с централизованной разделяемой памятью предоставляет центральную память для использования всеми процессорами. Обычно, к такой разделяемой памяти подключены посредством одной шины несколько десятков процессоров. Подобная организация называется SMP (ее мы рассматривали выше). Преимущества SMP в том, что все процессоры используют общую память, и время необходимое для доступа к любой части этой памяти, для них одинаково. Поэтому конфигурации SMP часто называют машинами с однородным доступом к памяти UMA (uniform memory access). Недостаток SMP — в ограниченности максимально поддерживаемого числа процессоров.

В машинах с распределенной памятью последняя поделена между несколькими узлами, каждый из которых содержит несколько процессоров, соединенных с памятью узла как в SMP. Пример — кластер AS/400 OptiConnect (подробнее см. главу 6). Иногда машины с распределенной памятью называют архитектурами без разделения (shared-nothing), так как память не разделяется между узлами, а для связи между ними используется передача сообщений. Преимущество разделяемой памяти в том, что она может быть очень большой, если такое разделение памяти не требуется приложениям.

Если каждый процессор в машине с распределенной памятью может выполнять одну и ту же операцию или одну и ту же программу над множеством независимых друг от друга наборов данных, то подобная конфигурация называется процессором с массовым параллелизмом MPP (massively parallel processor). Пример — система MPP в IBM SP2, использующая по одному процессору на узел[ 23 ]. У SP2 также очень хороший механизм передачи сообщений, позволяющий процессорам быстро обмениваться информацией друг с другом. Системы MPP могут насчитывать тысячи процессоров; их недостаток в том, что такая архитектура полезна только для некоторых типов приложений, таких как параллельная обработка баз данных или научных вычислений (то есть там, где совместное использование данных не требуется).

Третья конфигурация — с распределенной разделяемой памятью, представляет собой вариант распределенной памяти. Здесь все узлы, состоящие из одного или нескольких процессоров, подключенных по схеме SMP, используют общее адресное пространство. Отличие этой конфигурации от машины с распределенной памятью в том, что здесь любой процессор может обратиться к любому участку памяти. Однако, время обращения к разным участкам памяти для каждого процессора различно в зависимости от того, где участок физически расположен в кластере. По этой причине такие конфигурации еще называют машинами с неоднородным доступом к памяти NUMA (non-uniform memory access). Мы рассмотрим NUMA в главе 12.

Это отступление от основной линии повествования здесь для того, чтобы помочь Вам, читатель, понять новую подсистему памяти, используемую сейчас в серии AS/ 400е. Эта подсистема разработана для конфигурации SMP, так как последняя наилучшим образом подходит для решения коммерческих задач, когда процессорам требуется использовать память совместно. Но Вы увидите, что она может использоваться и с другими конфигурациями памяти.

Перекрестные переключатели

В рамках начавшейся в 1995 году десятилетней программы ASCI (Accelerated Strategic Computing Initiative) министерство энергетики США DOE (Department of Energy) запросило у производителей компьютеров предложения по созданию самых мощных на сегодня ЭВМ. Задача ACSI — разработка «триллионных» компьютеров, которые могут быть использованы в том числе для моделирования ядерных испытаний. Предполагается, что триллионные (tera-scale) вычисления (таково официальное название для триллиона операций в секунду) будут широко применяться в коммерческих и научных приложениях в следующем столетии. Такие компьютеры создаются в трех национальных лабораториях DOE, связанных с проектом ASCI.

На первом этапе проекта ASCI — ASCI Option Red — рассматривалась большая конфигурация MPP с процессорами, организованными по традиционной модели распределенной памяти. Intel получил контракт на разработку компьютера с 9 072 процессорами Pentium Pro, 283 гигабайтами памяти и двумя терабайтами дискового пространства. Эта система имеет архитектуру MPP без разделения. Испытания новой системы происходили в национальной лаборатории Сандиа (Sandia), штат Нью-Мехи-ко. Ставилась задача — Сандиа (Sandia), «выжать» из единственного в своем роде компьютера, стоимостью в 55 миллионов долларов, триллион операций с плавающей точкой в секунду (один терафлоп). В декабре 1996 компьютер Intel DOE достиг этой цели.

DOE также хотело устранить ограничения двух распространенных многопроцессорных архитектур (SMP и MPP). Как мы уже говорили, системы SMP использующие шины, не масштабируются больше 32 процессоров, но отлично работают для большинства приложений. Схемы MPP сложнее в программировании и подходят только для некоторых классов приложений. Кроме того, их работа сильно замедляется при необходимости доступа к данным, разбросанным по системе. Поэтому DOE предложила новый проект масштабируемого SMP, названного ASCI Option Blue.

Контракты на создание этих систем к концу 1998 года получили две компании, чьи предложения были самыми обещающими: IBM и Cray Research, которая была приобретена SGI (Silicon Graphics Incorporated). Машина IBM названная ASCI Blue Pacific будет установлена в национальной лаборатории имени. Лоуренса (Lawrence) в Ливер-море (Livermore), штат Калифорния, а машина SGI/Cray, получившая имя ASCI Blue Mountain — в национальной лаборатории в Лос-Аламосе (Los Alamos), штат Нью-Ме-хико. Задача обоих компьютеров Option Blue — достичь производительности более 3 терафлоп.

В проекте IBM используются компактные узлы SMP с восемью процессорами; эти узлы соединяются с помощью переключателей передачи сообщений SP2. Проект SGI/

Cray более сложен и включает в себя комбинацию соединений и технологий операционных систем с целью создания образа единой SMP-подобной машины. И хотя физически данные будут распределены по системе, это будет архитектура NUMA.

Компьютер IBM ASCI Blue Pacific будет содержать 512 8-процессорных узлов SMP, 4 096 сверхвысокопроизводительных процессоров PowerPC. Процессор, предназначенный для версии Belatrix Остина, назван 630. Он имеет высокую производительность для вычислений с плавающей точкой и в точности соответствует типу проблем, решать которые призван компьютер DOE.

Для связи между узлами в ASCI Blue Pacific планируется новый высокоскоростной переключатель передачи сообщений типа SP2. Подсистема памяти, позволяющая процессорам внутри узла эффективно использовать память, будет использовать новый 128-разрядный перекрестный переключатель (cross-bar switch)[ 24 ]. Подсистема памяти на основе таких переключателей позволяет нескольким процессорам обращаться к памяти узла параллельно и обеспечивает конфигурацию UMA, где устранена проблема, присущая шине памяти в большинстве конфигураций SMP.

Я упомянул о проекте DOE для того чтобы рассказать о новой подсистеме памяти, используемой в узлах SMP ASCI Blue Pacific. Первая подсистема UMA, использующая 128-разрядный перекрестный переключатель, была разработана в Рочестере. Аналогичная схема используется в настоящее время в компьютерах SMP Apache. Вместо одной шины между памятью и кэшем второго уровня, как в предыдущих системах SMP AS/400, в Apache применены перекрестные переключатели. Благодаря поддержке нескольких параллельных обращений к памяти за один цикл, возможна пересылка больших объемов данных между кэшем и разделяемой памятью, что позволяет поддерживать загрузку процессоров в больших конфигурациях SMP.

1 ... 16 17 18 19 20 21 22 23 24 ... 107
Перейти на страницу:
На этой странице вы можете бесплатно скачать Основы AS/400 - Фрэнк Солтис торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...