Нефть XXI. Мифы и реальность альтернативной энергетики - В. Арутюнов
Шрифт:
Интервал:
Закладка:
Таблица XII. Характерные потоки солнечного излучения для различных зон Земли
Что касается экологической чистоты солнечной энергетики, то тут тоже далеко не все так просто и однозначно. Конечно, в местах расположения солнечных панелей при выработке электроэнергии не производится никаких вредных отходов. Но само производство основы солнечных элементов – кремния – достаточно вредное производство. И парадокс солнечной энергетики в том, что чистая энергия требует грязного производства оборудования. Кроме того, после окончания срока службы солнечных панелей, содержащих вредные компоненты, например, кадмий, их утилизация также связана с экологическими проблемами.
Что касается солнечных станций термического типа, то здесь проблемы связаны с большими площадями затененных земель. Это приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. При этом изменяются тепловой баланс, влажность, направление ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Неизбежные во время длительной эксплуатации утечки низкокипящих жидкостей в солнечных энергетических системах могут привести к загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.
В качестве потенциального направления развития солнечной энергетики, позволяющего обойти сложности и ограничения наземных станций, часто рассматривают идею создания орбитальных солнечных станций с развертыванием солнечных панелей в космосе. Пока перспектива реализации таких проектов промышленного масштаба, видимо, еще более отдаленная, чем термоядерной энергетики. Среди главных проблем – передача энергии от космической электростанции на Землю.
4.5.2. Ветроэнергетика – низкая мощность и нестабильность
Главные проблемы ветровой энергетики – это непостоянство вырабатываемой энергии и высокая стоимость ветрогенераторов. Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-х годах, офшорная ветроэнергетика остается одним из наиболее дорогих источников электричества. Стоимость производства электроэнергии на офшорных ветроэлектростанциях колеблется от 200 до 125 долл./МВтч. Однако крупные компании-производители оборудования надеются снизить к 2020 году стоимость оффшорной электроэнергии до уровня ниже 120 долл./МВтч.
Другой проблемой остается низкая единичная мощность ветрогенераторов. Для обеспечения установленной мощности в 1000 МВт, соответствующей типовой тепловой ТЭЦ, необходимо 660 больших ветряков, занимающих площадь в 375 квадратных миль. Как отмечают специалисты, если даже довести ветряки до размера небоскребов, для полного обеспечения потребностей Нью-Йорка будет достаточно «всего» 13 тыс. таких гигантов. Но номинальная мощность ветряной электростанции – это максимальный показатель ее генерации, достижимый в том случае, если сильный ветер вращает лопасти постоянно. А поскольку у природы бывает и безветренная погода, фактическая мощность составляет не более 26 % от проектной. Таким образом, вышеназванные цифры следует умножить на четыре.
Сооружение ветроэлектростанций окупается в среднем лишь лет через 10 после введения их в эксплуатацию. Причем экономически оно оправдано при среднегодовой скорости ветра свыше 5 м/с. На большей части территории России таких ветров нет. Поэтому развивать ветроэнергетику целесообразно в основном на Крайнем Севере, побережьях и островах северных и восточных морей.
Самые ветреные зоны России – Кольский полуостров, Обская губа и северная часть побережья Дальнего Востока, где среднегодовая скорость ветра равна 11–12 м/сек. Но даже при наличии благоприятных природных условий высокая стоимость и непостоянство производства энергии делают ветровые электростанции всего лишь вспомогательным источником энергии.
Ветроэнергетика, несмотря на формальную «чистоту» вырабатываемой энергии, на самом деле не лишена экологических и климатических проблем. Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков, как в Европе, это замедление может оказывать заметное влияние на локальные и даже глобальные климатические условия. В частности, снижение средней скорости ветров способно сделать климат региона намного более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Отбор энергии ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, исследования в этой области только разворачиваются, и пока нет количественных оценок воздействия широкомасштабной ветровой энергетики на климат, хотя уже можно заключить, что оно не столь пренебрежимо мало, как полагали ранее.
Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки величиной 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов – 300 м связано с низкочастотными колебаниями, передающимися через почву и вызывающими ощутимое дребезжание стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса. Засилье ветряков в Европе уже начинает восприниматься как негативное явление. В 2005 году Министерство энергетики ФРГ, где работает 15 тысяч ветроэнергоустановок различной мощности, выпустило доклад, в которой признало энергию ветроэлектростанций слишком дорогой.
Разумеется, и у ветроэнергетики, и у солнечной энергетики есть свои области применения, где они с блеском выигрывают конкуренцию. Например, солнечные батареи и ветряки успешно используются в автономных источниках энергии в тех местах, где невозможно использовать энергию от других источников. Есть регионы, где количество солнечных дней позволяет оправдать строительство более или менее крупных солнечных электростанций. Ветровые установки могут быть с успехом применены в ненаселенных местах, где постоянно дует сильный ветер, например на острове Кергелен в Южном полушарии, который постоянно находится под воздействием антарктических штормов. Но строить на их основе базовую энергетику невозможно. В этом отношении они абсолютно проигрывают более надежным и мощным тепловым и атомным электростанциям, которые вырабатывают электроэнергию в базовом режиме, т. е. круглосуточно и круглогодично.
4.5.3. Биотопливо – возможен ли ренессанс?
Современная биомасса Земли в пересчете на сухое вещество составляет примерно 2 400 млрд т, т. е. на порядок превышает ее ежегодный прирост. При этом на биомассу океана приходится всего 3,2 млрд т, т. е. почти в 1000 раз меньше. Это связано с меньшей эффективностью фотосинтеза океана, так как эффективность использования энергии Солнца на площади океана равна 0,04 %, а на суше – 0,1 %. Однако удельная продуктивность океанических биоценозов настолько высока, что ничтожная по сравнению с сушей фитомасса океанов создает ежегодно чистую продукцию, сопоставимую с чистой продукцией суши. В океанах ежегодно образуется 55 млрд т растительной массы, что составляет почти треть общей биопродукции планеты. А суммарная масса живого вещества, произведенного на Земле за последний миллиард лет, превышает всю массу земной коры, что, конечно, не может не впечатлять, и вызывает энтузиазм у поклонников «зеленой энергетики». Биомасса на суше распределена очень неравномерно, ее объем возрастает от полюсов к экватору, причем более 99 % биомассы приходится на зеленые растения, а животные и микроорганизмы составляют менее 1 % (табл. XIII).
Таблица XIII. Распределение живого вещества на планете
Из потока излучения, падающего непосредственно на поверхность, около 40 % приходится на участки Земли, покрытые растениями, а также на водоемы с содержащейся в них растительностью. С учетом того, что растения способны поглощать лишь определенную часть солнечного спектра, а также потерь энергии радиации вследствие отражения и других причин и низкого КПД фотосинтеза, составляющего в среднем около 1 %, в продуктах фотосинтеза ежегодно запасается лишь незначительная часть падающей на поверхность Земли солнечной энергии. Кроме создания чистой продукции, живой покров суши использует захваченную им энергию Солнца для процесса дыхания, энергетические затраты на которое составляют около 30–40 % энергии, расходуемой на создание чистой продукции. Таким образом, биосфера использует на процессы жизнедеятельности лишь небольшую часть падающего на Землю потока солнечной радиации.