Большая Советская Энциклопедия (ВЕ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Третий период истории В. т. (2-я половина 19 в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего). В. т. развивалась в России и раньше (в 18 в. ряд трудов по В. т. был написан работавшими в России Л. Эйлером, Н. Бернулли и Д. Бернулли; во второй период развития В. т. следует отметить работы М. В. Остроградского по вопросам В. т., связанным с математической статистикой, и В. Я. Буняковского по применениям В. т. к страховому делу, статистике и демографии). Со 2-й половины 19 в. исследования по В. т. в России занимают ведущее место в мире. Чебышев и его ученики Ляпунов н Марков поставили и решили ряд общих задач в В. т., обобщающих теоремы Бернулли и Лапласа. Чебышев чрезвычайно просто доказал (1867) закон больших чисел при весьма общих предположениях. Он же впервые сформулировал (1887) центральную предельную теорему для сумм независимых случайных величин и указал один из методов её доказательства. Другим методом Ляпунов получил (1901) близкое к окончательному решение этого вопроса. Марков впервые рассмотрел (1907) один случай зависимых испытаний, который впоследствии получил название цепей Маркова.
В Западной Европе во 2-й половине 19 в. получили большое развитие работы по математической статистике (в Бельгии — А. Кетле, в Англии — Ф. Гальтон) и статистической физике (в Австрии — Л. Больцман), которые наряду с основными теоретическими работами Чебышева, Ляпунова и Маркова создали основу для существенного расширения проблематики В. т. в четвёртом (современном) периоде её развития. Этот период истории В. т. характеризуется чрезвычайным расширением круга её применений, созданием нескольких систем безукоризненно строгого математического обоснования В. т., новых мощных методов, требующих иногда применения (помимо классического анализа) средств теории множеств, теории функций действительного переменного и функционального анализа. В этот период при очень большом усилении работы по В. т. за рубежом (во Франции — Э. Борель, П. Леви, М. Фреше, в Германии — Р. Мизес, в США — Н. Винер, В. Феллер, Дж. Дуб, в Швеции — Г. Крамер) советская наука продолжает занимать значительное, а в ряде направлений и ведущее положение. В нашей стране новый период развития В. т. открывается деятельностью С. Н. Бернштейна, значительно обобщившего классические предельные теоремы Чебышева, Ляпунова и Маркова и впервые в России широко поставившего работу по применениям В. т. к естествознанию. В Москве А. Я. Хинчин и А. Н. Колмогоров начали с применения к вопросам В. т. методов теории функций действительного переменного. Позднее (в 30-х гг.) они (и Е. Е. Слуцкий) заложили основы теории случайных процессов. В. И. Романовский (Ташкент) и Н. В. Смирнов (Москва) поставили на большую высоту работу по применениям В. т. к математической статистике. Кроме обширной московской группы специалистов по В. т., в настоящее время в СССР разработкой проблем В. т. занимаются в Ленинграде (во главе с Ю. В. Линником) и в Киеве.
Лит.: Основоположники и классики теории вероятностей. Bernoulli J., Ars conjectandi, opus posthumum, Basileae, 1713 (рус. пер., СПБ. 1913); Laplace [P. S.], Théorie analytique des probabilités, 3 éd.. P., 1886 (CEuvres complétes de Laplase, t. 7, livre 1—2); Чебышев П. Л., Поли. собр. соч., т. 2-3, М. — Л., 1947—48; Liapounoff A., Nouvelle forme du théoréme sur la limite de probabilité, СПБ, 1901 («Зап. АН по физико-математическому отделению, 8 серия», т. 12, №5); Марков А. А., Исследование замечательного случая зависимых испытаний, «Изв. АН, 6 серия», 1907, т 1 М 3.
Популярная и учебная литература. Гнеденко Б. В. и Хинчин А. Я., Элементарное введение в теорию вероятностей, 3 изд., М. — Л., 1952; Гнеденко Б. В., Курс теории вероятностей, 4 изд., М., 1965; Марков А. А., Исчисление вероятностей, 4 изд., М., 1924; Бернштейн С. Н., Теория вероятностей, 4 изд., М. — Л., 1946; Феллер В., Введение в теорию вероятностей и её приложение (Дискретные распределения), пер. с англ., 2 изд., т. 1—2, М., 1967.
Обзоры и монографии . Гнеденко Б. В. и Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за тридцать лет. 1917—1947. Сб. ст., М. — Л., 1948; Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за сорок лет. 1917—57. Сб. ст., т. 1, М., 1959; Колмогоров А. Н., Основные понятия теории вероятностей, пер. с нем., М.—Л., 1936; его же, Об аналитических методах в теории вероятностей, «Успехи математических наук», 1938, в. 5, с. 5—41; Хинчин А. Я., Асимптотические законы теории вероятностей, пер. с нем., М.—Л., 1936; Гнеденко Б. В. и Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.—Л., 1949; Дуб Дж. Л., Вероятностные процессы, пер. с англ., М., 1956: Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, М., 1967.
Ю. В. Прохоров, Б. А. Севастьянов.
Вероятностная бумага
Вероя'тностная бума'га нормальная, специальным образом разграфленная бумага, построенная так, что график функции нормального распределения изображается на ней прямой линией. Это достигается изменением шкалы на вертикальной оси (см. рис. ). На свойстве «выпрямления» основан простой способ проверки гипотезы о принадлежности данной выборки к нормальной совокупности: если построенная на В. б. эмпирическая функция распределения хорошо приближается прямой линией, то можно с основанием полагать, что совокупность, из которой взята выборка, является приближённо нормальной. Достоинство этого метода состоит в том, что вывод о принадлежности к нормальной совокупности можно сделать без знания численных значений параметров гипотетического распределения.
Лит.: Арлей Н., Бух К. P., Введение в теорию вероятностей и математическую статистику, пер. с англ., М., 1951; Dixon W. J., Massey F. J., Introduction to statistical analysis, N. Y. — Toronto — L., 1957.
А. В. Прохоров.
Образец вероятностной бумаги. Проведённая линия — график функции нормального распределения со средним 100 и стандартным отклонением 8.
Вероятностная логика
Вероя'тностная ло'гика, логическая система, в которой высказываниям (суждениям, утверждениям, предложениям), помимо истины и лжи, приписываются «промежуточные» истинностные значения, называемые вероятностями истинности высказываний, степенями их правдоподобия, степенями подтверждения и т.п. Поскольку понятие вероятности естественно соотносить некоторым событиям , а наступление или не наступление события есть факт, допускающий (хотя бы в принципе) эмпирическую проверку (в широком смысле — включая так называемый мысленный эксперимент, а также вывод из знания о наступлении или не наступлении др. событий), то В. л. представляет собой уточнение индуктивной логики . Взаимные переходы от языка высказываний к языку событий и обратно совершаются настолько естественно, что выглядят почти тривиальными: каждому событию сопоставляется высказывание о его наступлении, а высказыванию сопоставляется событие, состоящее в том, что оно оказалось истинным. Специфика В. л. (даже полностью формализованной в логико-математических терминах) состоит в принципиальной неустранимости неполной достоверности («относительной истинности») посылок и выводов, присущей всякому индуктивному познанию.
Проблематика В. л. развивалась уже по существу в древности (например, Аристотелем), а в новое время — Г. В. Лейбницем , Дж. Булем , У. С. Джевонсом, Дж. Венном .
Как логическая система, В. л. — разновидность многозначной логики : истинным высказываниям (достоверным событиям) приписывается истинностное значение (вероятность) 1, ложным высказываниям (невозможным событиям) — значение 0; гипотетическим же высказываниям может приписываться в качестве значения любое действительное число из интервала (0, 1). Вероятность гипотезы, зависящая как от её содержания (формулировки), так и от информации об уже имеющемся знании («опыта»), есть их функция . Над истинностными значениями (вероятностями) гипотез определяются логические операции : конъюнкция (соответствующая умножению событий в теории вероятностей) и дизъюнкция (соответствующая сложению событий); мерой (значением) отрицания гипотезы является вероятность события, состоящего в её неподтверждении. Значения гипотез образуют при этом так называемую нормированную булеву алгебру, сравнительно простой и хорошо разработанный аппарат которой позволяет легко аксиоматизировать теорию вероятностей и является простейшим вариантом В. л.
В соответствии с др. трактовкой понятия вероятности, связанной с так называемой частотной концепцией (определением) вероятности (А. Пуанкаре , М. Смолуховский , Р. Мизес ), в В. л. получили развитие идеи, согласно которым основным объектом её рассмотрения являются не вероятности отдельных событий, а случайные процессы , реализуемые в простейшем случае в виде случайных двоичных последовательностей, то есть последовательностей нулей и единиц (соответствующих единичным актам не наступления и наступления некоторого события при повторных испытаниях).