Физики шутят - Сборник Сборник
Шрифт:
Интервал:
Закладка:
На отмычки настоящее исследование не распространяется.
Автор выражает благодарность сотрудникам, работающим в разных группах, за горячее обсуждение затронутых проблем.
Номограмма распределения времени на разных стадиях научной карьеры.
Пример применения: отрезки горизонтальной пунктирной линии показывают, что молодые специалисты тратят время в основном на работу; на конференции и лекции времени остается мало.
О возможности создания электростанций на угле
О. Фриш [14]
От редактораПриводимая ниже статья перепечатана ежегодника Королевского института по использованию энергетических ресурсов за 40905 год, стр. 1001.
В связи с острым кризисом, вызванным угрозой истощения урановых и ториевых залежей на Земле и Луне, редакция считает полезным призвать к самому широкому распространению информации, содержащейся в этой статье.
ВведениеНедавно найденный сразу в нескольких местах уголь (черные, окаменевшие остатки древних растений) открывает интересные возможности «для создания неядерной энергетики. Некоторые месторождения несут следы эксплуатации их доисторическими людьми, которые, по-видимому, употребляли уголь для изготовления ювелирных изделий и чернили им лица во время погребальных церемоний.
Возможность использования угля в энергетике связана с тем фактом, что он легко окисляется, причем создается высокая температура с выделением удельной энергии, близкой к 0,0000001 мегаватт-дня на грамм. Это, конечно, очень мало, но запасы угля, по-видимому, велики и, возможно, исчисляются I мил л ионами тонн.
Главным преимуществом угля следует считать его очень маленькую по сравнению с делящимися материалами критическую массу. Атомные электростанции, как известно, становятся неэкономичными при мощности ниже 50 мегаватт, и угольные электростанции могут оказаться вполне эффективными в маленьких населенных пунктах с ограниченными энергетическими потребностями.
Проектирование угольных реакторовГлавная трудность заключается в создании самоподдерживающейся и контролируемой реакции окисления топливных элементов. Кинетика этой реакции значительно сложнее, чем кинетика ядерного деления, и изучена еще слабо. Правда, дифференциальное уравнение, приближенно описывающее этот процесс, уже получено, но решение его возможно лишь в простейших частных случаях. Поэтому корпус угольного реактора предлагается изготовить в виде цилиндра с перфорированными стенками. Через эти отверстия будут удаляться продукты горения. Внутренний цилиндр, коаксиальный с первым и также перфорированный, служит для подачи кислорода, а тепловыделяющие элементы помещаются в зазоре между цилиндрами. Необходимость закрывать цилиндры на концах торцовыми плитами создает трудную, хотя и разрешимую математическую проблему.
Тепловыделяющие элементыИзготовление их, по-видимому, обойдется дешевле, чем в случае ядерных реакторов, так как нет необходимости заключать горючее в оболочку, которая в этом случае даже нежелательна, поскольку она затрудняет доступ кислорода. Были рассчитаны различные типы решеток, и уже самая простая из них – плотноупакованные сферы, – по-видимому, вполне удовлетворительна.
Расчеты оптимального размера этих сфер и соответствующих допусков находятся сейчас в стадии завершения. Уголь легко обрабатывается, и изготовление таких сфер, очевидно, не представит серьезных трудностей.
ОкислительЧИСТЫЙ кислород идеально подходит для этой цели, но он дорог, и самым дешевым заменителем является воздух. Однако воздух на 78 % состоит из азота. Если даже часть азота прореагирует с углеродом, образуя ядовитый газ циан, то и она будет источником серьезной опасности для здоровья обслуживающего персонала (см. ниже).
Управление и контрольРеакция начинает идти лишь при довольно высокой температуре (988 градусов по Фаренгейту). Такую температуру легче всего получить, пропуская между внешним и внутренним цилиндрами реактора электрический ток в несколько тысяч ампер при напряжении не ниже 30 вольт. Торцовые пластины в этом случае необходимо изготовлять из изолирующей керамики, и это вместе с громоздкой батареей аккумуляторов значительно увеличит стоимость установки. Для запуска можно использовать также какую-либо реакцию с самовозгоранием, например между фосфором и перекисью водорода, и такую возможность не следует упускать из виду.
Течение реакции после запуска можно контролировать, регулируя подачу кислорода, что почти столь же просто, как управление обычным ядерным реактором с помощью регулирующих стержней.
КоррозияСтенки реактора должны выдерживать температуру выше 1000К в атмосфере, содержащей кислород, азот, окись и двуокись углерода, двуокись серы и различные примеси, многие из которых еще неизвестны. Немногие металлы и специальная керамика могут выдержать такие условия. Привлекательной возможностью является никелированный ниобий, но, возможно, придется использовать чистый никель.
Техника безопасностиВыделение ядовитых газов из реактора представляет серьезную угрозу для обслуживающего персонала. В состав этих газообразных продуктов, помимо исключительно токсичных окиси углерода и двуокиси серы, входят также некоторые канцерогенные соединения, такие, как фенантрен. Выбрасывание их непосредственно в атмосферу недопустимо, поскольку приведет к заражению воздуха в радиусе нескольких миль. Эти газы необходимо собирать в контейнеры и подвергать химической детоксификации. При обращении как с газообразными, так и с твердыми продуктами реакции необходимо использовать стандартные методы дистанционного управления. После обеззараживания эти продукты лучше всего топить в море.
Существует возможность, хотя и весьма маловероятная, что подача окислителя выйдет из-под контроля. Это приведет к расплавлению всего реактора и выделению огромного количества ядовитых газов. Последнее обстоятельство является главным аргументом против угля и в пользу ядерных реакторов, которые за последние несколько тысяч лет доказали свою безопасность. Пройдут, возможно, десятилетия, прежде чем будут разработаны достаточно надежные методы управления угольными реакторами.
К 50-летию Рудольфа Пайерлса
«Вначале был нейтрон»
Рудольф Пайерлс родился в 1907 году, и этот факт имеет первостепенное значение, по крайней мере с точки зрения издания настоящего сборника. Если в детстве он и был гениальным ребенком, то об этом никто не помнит. Поэтому мы не будем интересоваться его до профессорской жизнью, заметим только, что сперва он учился у Зоммерфельда, а затем был переброшен к Гейзенбергу. Большинство своих открытий того времени он сделал в поездах. Путешествия заносили его далеко, например в Россию, и никто из знающих его жену не обвинит Пайерлса в том, что он вернулся оттуда с пустыми руками.
Некоторое время он работал ассистентом Паули. Паули, очевидно, был им очень доволен, потому что впоследствии с любовью вспоминал, что «Der Peierls hat immer Quatsch gerechnet».
В это время он внес свой крупный вклад в квантовую теорию излучения, и тут они с Ландау заварили такую кашу, что Бор и Розенфельд расхлебывали ее несколько месяцев. За время, прошедшее с тех пор, он, по-видимому, высказал больше неверных гипотез, чем любой другой физик за любой отрезок времени, что целиком подтверждает известную поговорку: «Добро, содеянное человеком, живет и после него, а зло… покрывают его ученики». По электронной теории металлов у него тоже были работы. И хотя они и не остались неопубликованными, в удобочитаемой форме их можно найти лишь в книге «Квантовая теория твердого тела». Не следует забывать и его вклад в ядерную физику. Его старому учителю приписывают высказывание, что критические замечания Пайерлса всегда были лучше, чем его работы, во всяком случае они гораздо эффективнее опровергали разные хорошие идеи. (Похоже, что этому он научился у своего учителя.) Кроме того, он внес свою лепту в теорию относительности, теорию поля, теорию отопления жилых помещений, в создание паровых котлов с автоматической углеподачей, в воспитание молодого поколения и т. д. и т. п. Но, пожалуй, больше всего он сделал в качестве педагога. Термин «пайерлсизация» в физике означает умение набить 30 человек в помещение, рассчитанное на 15, не пользуясь ни оливковым маслом, ни томатным соусом…