Схемотехника аналоговых электронных устройств - А. Красько
Шрифт:
Интервал:
Закладка:
Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины.
Рассмотрим работу ДУ для основного рабочего режима — дифференциального. За счет действия Uвх1 транзистор VT1 приоткрывается, и его ток эмиттера получает приращение ΔIэ1, а за счет действия Uвх2 транзистор VT2 призакрывается, и ток его эмиттера получает отрицательное приращение –ΔIэ2. Следовательно, результирующее приращение тока в цепи резистора Rэ при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует.
При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор Rэ, которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала KU диф будет равен в случае симметрии плеч (см. подраздел 4.4) KU диф=2·KU пл=K0, т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ.
ДУ отличает малый дрейф нуля, большой коэффициент усиления дифференциального (противофазного) сигнала KU диф и большой коэффициент подавления синфазных помех, т.е. малый коэффициент передачи синфазного сигнала KU сф.
Для обеспечения качественного выполнения этих функций необходимо выполнить два основных требования. Первое из них состоит в обеспечении симметрии обоих плеч ДУ. Приблизиться к выполнению этого требования позволила микроэлектроника, поскольку только в монолитной ИМС близко расположенные элементы действительно имеют почти одинаковые параметры с одинаковой реакцией на воздействие температуры, старения и т.п.
Второе требование состоит в обеспечении глубокой ООС для синфазного сигнала. В качестве синфазного сигнала для ДУ выступают помехи, наводки, поступающие на входы в фазе. Поскольку Rэ создает глубокую ПООСТ для обоих плеч ДУ, то для синфазного сигнала будет наблюдаться значительное уменьшение коэффициентов передачи каскадов с ОЭ, образующих эти плечи.
Коэффициент усиления каждого плеча для синфазного сигнала можно представить как K0ОС каскада с ОЭ при глубокой ООС. Согласно подраздела 3.2 имеем:
KU сф1 ≈ Rк1/Rэ,
KU сф2 ≈ Rк2/Rэ.
Теперь можно записать для KU сф всего ДУ:
KU сф ≈ ΔRк/Rэ,
где ΔRк = |Rк1 – Rк2|.
Для оценки подавления синфазного сигнала вводят коэффициент ослабления синфазного сигнала (КОСС), равный отношению модулей коэффициентов передач дифференциального и синфазного сигналов.
Из сказанного следует, что увеличение КОСС возможно путем уменьшения разброса номиналов резисторов в цепях коллекторов (в монолитных ИМС — не более 3%) и путем увеличения Rэ. Однако увеличение Rэ требует увеличения напряжения источника питания (что неизбежно приведет к увеличению рассеиваемой тепловой мощности в ДУ), и не всегда возможно из-за технологических трудностей реализации резисторов больших номиналов в монолитных ИМС.
Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является источник стабильного тока (ИСТ), варианты схем которого приведены на рисунке 5.6.
Рисунок 5.6. ИСТ на БТ и ПТ
ИСТ подключается вместо Rэ (см. рисунок 5.5), а заданный ток и термостабильность обеспечивают элементы R1, R2, Rэ и VD1 (рисунок 5.6а), и R1 (рисунок 5.6б). Для реальных условий ИСТ представляет собой эквивалент сопротивления для изменяющегося сигнала номиналом до единиц мегом, а в режиме покоя — порядка единиц килоом, что делает ДУ экономичным по питанию.
Использование ИСТ позволяет реализовать ДУ в виде экономичной ИМС, с КОСС порядка 100 дБ.
При использовании ПТ характер построения ДУ не меняется, следует только учитывать особенности питания и термостабилизации ПТ.
5.4. Схемы включения ДУ
Можно выделить четыре схемы включения ДУ: симметричный вход и выход, несимметричный вход и симметричный выход, симметричный вход и несимметричный выход, несимметричный вход и выход.
Схема включения ДУ симметричный вход и выход приведена на рисунке 5.7 и в особых комментариях не нуждается, такая схема включения применяется при каскадировании ДУ.
Рисунок 5.7. Схема включения ДУ «симметричный вход и выход»
Схема включения ДУ несимметричный вход и симметричный выход рассматривалась ранее (см. рисунок 4.9).
Схема включения ДУ симметричный вход и несимметричный выход приведена на рисунке 5.8.
Рисунок 5.8. Схема включения ДУ «симметричный вход — несимметричный выход»
Такая схема включения ДУ применяется в случае необходимости перехода от симметричного источника сигнала (либо симметричного тракта передачи) к несимметричной нагрузке (несимметричному тракту передачи). Нетрудно показать, что дифференциальный коэффициент усиления при таком включении будет равен половине KU диф при симметричной нагрузке. Вместо резисторов Rк в ДУ часто используют транзисторы, выполняющие функции динамических нагрузок. В рассматриваемом варианте включения ДУ целесообразно использовать в качестве динамической нагрузки так называемое токовое зеркало, образованное транзисторами VT3 и VT4 (рисунок 5.9).
Рисунок 5.9. Схема ДУ с токовым зеркалом
При подаче на базу транзистора VT1 положительной полуволны гармонического сигнала Uвх1, в цепи транзистора VT3 (включенного по схеме диода) возникает приращение тока ΔIк1. За счет этого тока возникает приращение напряжения между базой и эмиттером VT3, которое является приращением входного напряжения для транзистора VT4. Таким образом, в цепи коллектор-эмиттер VT4 возникает приращение тока, практически равное ΔIк1, поскольку в ДУ плечи симметричны. В рассматриваемый момент времени на базу транзистора VT2 подается отрицательная полуволна входного гармонического сигнала Uвх2. Следовательно, в цепи его коллектора появилось отрицательное приращение тока ΔIк2. При этом приращение тока нагрузки ДУ равно ΔIк1+ΔIк2, т.е. ДУ с отражателем тока обеспечивает большее усиление дифференциального сигнала. Необходимо также отметить, что для рассматриваемого варианта ДУ в режиме покоя ток нагрузки равен нулю.
При несимметричном входе и выходе работа ДУ в принципе не отличается от случая несимметричный вход — симметричный выход. В зависимости от того, с какого плеча снимается выходной сигнал, возможно получение синфазного или противофазного выходного сигнала, как это получается в фазоинверсном каскаде на основе ДУ (см. подраздел 4.4).
5.5. Точностные параметры ДУ
К точностным параметрам ДУ относятся паразитные напряжения и токи, имеющие место в режиме покоя, но оказывающие влияние на качество усиления рабочего сигнала.
В реальном ДУ за счет асимметрии плеч на выходе устройства всегда присутствует паразитное напряжение между выходами. Для сведения его к нулю на вход (плеча) необходимо подать компенсирующий сигнал — напряжение смещения нуля Uсм, представляющее собой кажущийся входной дифференциальный сигнал.
Напряжение Uсм порождается, в основном, разбросом величин обратных токов эмиттерных переходов Iэбо1 и Iэбо2 (U'см), и разбросом номиналов резисторов Rк1 и Rк2 (U"см). Для этих напряжений можно записать:
U'см = φT·ln(Iэбо1/Iэбо2),
U"см = 2·φT·ΔRк/Rк.