Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Дуэль нейрохирургов. Как открывали тайны мозга и почему смерть одного короля смогла перевернуть науку - Сэм Кин

Дуэль нейрохирургов. Как открывали тайны мозга и почему смерть одного короля смогла перевернуть науку - Сэм Кин

Читать онлайн Дуэль нейрохирургов. Как открывали тайны мозга и почему смерть одного короля смогла перевернуть науку - Сэм Кин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 93
Перейти на страницу:

А когда он достиг совершенства, то мог ориентироваться повсюду – от художественных галерей Ватикана до склона Везувия во время извержения. Подобно вспышкам света в темной комнате, стук трости стал вторым зрением для Холмана.

Ученые часто называют человеческий мозг самым сложным из когда-либо существовавших механизмов. Он содержит примерно сто миллиардов нейронов, и оконечность каждого аксона соединяется с тысячами соседей, создавая огромное количество связей обработки информации. (Этих связей так много, что нейроны подчиняются знаменитому правилу «шести шагов»: любые два нейрона разделены не более чем шестью связями.)

А такие случаи, как история Джеймса Холмана, еще более показательны: они свидетельствуют, что человеческий мозг может отходить от стандартного плана «прокладки путей» и даже «перекладывать» их, изменяя схему соединений с течением времени. Некоторые из этих изменений кажутся такими же фантастическими, как путешествие слепого человека на вершину вулкана, но они дают нам представление о невероятной пластичности наших нейронных цепей.

* * *

Для того чтобы понять, как работают нейронные цепи, представьте звук – например, стук по мостовой, – достигающий уха Джеймса Холмана. Этот стук отдается в разных костях и мембранах ушного канала и в конце концов передает свою энергию жидкости во внутреннем ухе. Эта жидкость омывает ряды крошечных волосковых клеток и, в зависимости от звука, в большей или меньшей степени наклоняет некоторые из них.

Волоски соединены с дендритами соседних нервных клеток, которые мгновенно активизируются и передают электрические сигналы по длинным аксонным «проводам», идущим в мозг. Достигая мозга, сигнал заставляет аксон выбрасывать смесь нейротрансмиттеров на ближайший синапс. В конечном счете это приводит к возбуждению нейронов слуховой коры, участка серого вещества в височной доле, который анализирует высоту, громкость и ритмичность звука.

Но достижение слуховой коры – это лишь начало. Для того чтобы Холман сознательно воспринял стук и мог ориентироваться по нему, сигнал должен дойти до других участков серого вещества для дальнейшей обработки. При этом сигнал сначала направляется вниз, под поверхность серого вещества, и проникает в белое вещество мозга.

Белое вещество в основном состоит из скоростных аксонных «кабелей», передающих информацию от одного узла серого вещества к другому со скоростью до 400 километров в час. Эти аксоны могут быстро переносить информацию, поскольку они толще обычных аксонов и заключены в оболочку из жировой субстанции, называемой миелином.

Миелин действует как резиновая изоляция на проводах и препятствует рассеиванию сигнала; у китов, жирафов и других крупных существ нейрон в миелиновой оболочке может передать сигнал на несколько метров почти без искажений. (С другой стороны, разные заболевания, которые приводят к истончению миелиновых оболочек, такие как рассеянный склероз, нарушают связи между различными узлами мозга.) В целом вы можете представлять серое вещество как мозаику из компьютерных чипов, анализирующих разные виды информации, а белое вещество – как проводники, передающие информацию между этими чипами.

Прежде чем двигаться дальше, я должен указать на то, что «серое» и «белое» вещество – это неправильные термины. Серое вещество в живом мозге имеет розовато-коричневый оттенок, а белое вещество, составляющее основную массу мозга, кажется бледно-розовым. Серый и белый цвет появляется лишь после того, как вымочить мозг в консервирующих жидкостях. Эти жидкости также приводят к отвердению мозга, который в обычном состоянии имеет консистенцию вязкого крахмала. Это объясняет, почему разрезы головного мозга, которые делают на практических занятиях по биологии, не приводят к распаду тканей.

Сигнал, передаваемый по нейронному «кабелю» белого вещества, может либо пробудить к жизни другие нейроны (Внимание!), либо анестезировать их (Не обращать внимания!). Но с учетом громадного количества нейронов и триллионов связей между различными нейронными узлами, один из главных вопросов неврологии заключается в том, откуда первоначальный сигнал «знает», по какому пути он должен следовать, какие нейроны нужно возбуждать или анестезировать. Ответ довольно прост: как и повозка Джеймса Холмана в Сибири, сигнал идет по наезженным колеям.

Начнем с двух нейронов. Если один нейрон раз за разом активирует другой в быстрой последовательности, синапс между ними начинает изменяться. Оконечность аксона первого нейрона становится крупнее и выделяет больше пузырьков с нейротрансмиттерами, заполняющими синаптическую щель; могут даже вырасти новые аксонные ветви. Второй нейрон может сделать связь с первым нейроном приоритетной, протягивая больше дендритовых рецепторов в его направлении. Это позволяет второму нейрону реагировать даже на слабые сигналы. В целом, как колеса фургона проделывают колеи на дороге после многократных поездок, так и повторная активация нейронов прокладывает в мозге «колеи», по которыми сигналы движутся с большей вероятностью, чем по другим маршрутам.

Ученые пользуются другой метафорой для объяснения того, как нейронные связи становятся крепче со временем: нейроны, срабатывающие вместе, соединяются друг с другом. И обычно это не два или три нейрона, которые срабатывают вместе. Когда «колея» установлена, создаются цепи из многих тысяч нейронов, срабатывающих в быстрой последовательности (17).

Благодаря аксонным «кабелям» в белом веществе эти цепи могут соединять даже отдаленные участки серого вещества, позволяя мозгу автоматически выполнять сложные действия. К примеру, все мы рождаемся с готовыми нейронными цепями в нижних отделах мозга, которые контролируют такие рефлексы, как чихание, глотание и зевание: как только первые нейроны срабатывают, остальные следуют за ними, как костяшки домино от малейшего толчка. Поэтому рефлекторные реакции у всех людей в целом одинаковы.

Вы можете представлять серое вещество как мозаику из компьютерных чипов, анализирующих разные виды информации.

Нейронные контуры в высших отделах мозга работают по такому же принципу. После долгой тренировки мы учимся связывать буквы в слове «собака» с образом пушистого четвероногого зверя и с речевыми слогами со-ба-ка. Любой элемент этой триады автоматически подключает остальные. Негативный опыт тоже может устанавливать нейронные связи. Войдите в аллею, где вы однажды сильно испугались, и ее запахи и тени вернут ощущение страха.

Человеческий мозг имеет стандартный план коммутации нейронных соединений, гарантирующий, что определенные группы нейронов всегда могут обратиться к другим группам, и это очень хорошо. Хорошо, что ваши глаза могут активировать контуры страха, а они, в свою очередь, велят ногам убираться куда подальше, иначе бы вы долго не протянули в этом мире. Эта общая схема закладывается еще до рождения, когда аксоны начинают формироваться и вытягиваться, как ростки. Тем не менее детали этой общей схемы могут варьировать от одного человека к другому. Один из ярких примеров – это синестезия, состояние, при котором человеческие чувства смешиваются странным и непредсказуемым образом.

У большинства людей один сенсорный стимул вызывает одну чувственную реакцию. Вишни на вкус – это просто вишни, а трение наждачной бумаги по коже ощущается как почесывание. У людей с синестезией один сенсорный сигнал вызывает множественные чувственные реакции – ожидаемый вкус вишни плюс, например, некий фантомный звук.

Эти наложенные ощущения являются непроизвольными и стойкими: каждый раз, когда человек с синестезией слышит ноту соль-диез, он ощущает запах перца, щекочущий ноздри. Синестезия также строго индивидуальна: если один человек всегда видит цифру 5 как цветок фуксии, то другой может настаивать на зеленом цвете, как у пирога из лайма.

Самый распространенный тип синестезии создает цветовую симфонию, особенно когда люди слышат определенные звуки или видят определенные буквы и цифры. Ричард Фейнман видел бежевые «j», индиговые «n» и шоколадные «x» в уравнениях. Владимир Набоков однажды сказал, что для него долгий звук «ааах» имеет «оттенок старого дерева», а более короткое «ах» «похоже на полированную слоновую кость». Франц Лист укорял музыкантов своего оркестра (которые могли лишь изумленно глядеть на него в ответ) в том, что они исполняют его музыку в неправильном цвете: «Господа, прошу вас немного усилить голубой оттенок, звучание зависит от этого!» В другой раз он умолял: «Это темно-фиолетовый [пассаж]!.. Не нужно так уходить в розовое…»

Буквенно-цветовая и звуко-цветовая синестезия является наиболее распространенной из-за особенностей «географии» мозга: некоторые участки, анализирующие звуки, буквы и цвета, находятся рядом друг с другом, поэтому сигналы могут легко «просачиваться» за границу. Но теоретически синестезия может связать любые два ощущения в мозге, и нам известно около шестидесяти ее типов.

1 ... 13 14 15 16 17 18 19 20 21 ... 93
Перейти на страницу:
На этой странице вы можете бесплатно скачать Дуэль нейрохирургов. Как открывали тайны мозга и почему смерть одного короля смогла перевернуть науку - Сэм Кин торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...