Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Биология » Удивительная палеонтология. История земли и жизни на ней - Кирилл Еськов

Удивительная палеонтология. История земли и жизни на ней - Кирилл Еськов

Читать онлайн Удивительная палеонтология. История земли и жизни на ней - Кирилл Еськов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 75
Перейти на страницу:

Здесь необходимо подчеркнуть одно фундаментальное различие между термодинамикой (связанной «кровным родством» с химией), с одной стороны, и всей прочей физикой (выросшей, так или иначе, из классической механики) — с другой. В классической динамике все процессы являются обратимыми  (это формулировали в явном виде все ее основатели, например, Галилей и Гюйгенс), а картина мира — детерминистической: если некое существо (демон Лапласа) будет знать все параметры состояния Вселенной в некий момент времени, то оно сможет и точно предсказать ее будущее, и до мельчайших деталей реконструировать прошлое. Из обратимости же физических процессов следует, что время не является объективной реальностью, а вводится нами лишь для собственного удобства — как нумерация порядка событий: планеты могут обращаться вокруг Солнца как вперед, так и назад по времени, ничего не изменяя в самих основах ньютоновской системы. Революция, произведенная в физике Эйнштейном, этой сферы не затронула, а его окончательное суждение на сей предмет гласит: «Время (как и необратимость) — не более чем иллюзия». Случайности также не нашлось места в той картине мира, что создана Эйнштейном; широко известна его чеканная формулировка God casts the die, not the dice (Бог не играет в кости). Даже квантовая механика, наиболее отличная по своей «идеологии» от всех прочих физических дисциплин, сохраняет этот взгляд на проблему времени: в лежащем в ее основе уравнении Шредингера время остается однозначно обратимым.

Принципиально иную картину мира рисовала термодинамика. Здесь аналогом Вселенной являлся не часовой механизм с бесконечным заводом, а паровой двигатель, в топке которого безвозвратно сгорает топливо. Согласно ВНТ, эта мировая машина постепенно сбавляет обороты, неотвратимо приближаясь к тепловой смерти, а потому ни один момент времени не тождествен предыдущему. События в целом невоспроизводимы, а это означает, что время обладает направленностью, или, согласно выражению А. Эддингтона, существует стрела времени. Осознание принципиального различия между двумя типами процессов — обратимыми, не зависящими от направления времени, и необратимыми, зависящими от него, — составляет саму основу термодинамики. Понятие энтропии для того и было введено, чтобы отличать первые от вторых: энтропия возрастает только в результате необратимых процессов. При этом, как заключает И. Пригожин, «стрела времени» проявляет себя лишь в сочетании со случайностью: только если система ведет себя достаточно случайным образом, в ее описании возникает реальное различие между прошлым и будущим, и, следовательно, необратимость. Картина мира становится стохастической — т.е. точно предсказать изменения мира во времени принципиально невозможно, а потому демона Лапласа следует отправить в отставку за полной его бесполезностью.

В XIX веке изучали лишь наиболее простые (замкнутые) системы, не обменивающиеся с внешней средой ни веществом, ни энергией; при этом в центре внимания находилась конечная стадия термодинамических процессов, когда система пребывает в состоянии, близком к равновесию. Тогдашняя термодинамика была равновесной термодинамикой. Именно равновесные состояния (в разреженном газе) изучал Больцман, с чем и была связана постигшая его творческая неудача: горячо восприняв идею эволюции (хорошо известна его оценка: «Девятнадцатый век — это век Дарвина»), он потратил массу сил и времени на то, чтобы дать дарвинизму строгое физическое обоснование, но так и не сумел этого сделать.[11] Более того, введенный им принцип порядка налагает прямой запрет на возникновение организованных (и потому менее вероятных) структур из неорганизованных, т.е. на прогрессивную эволюцию. На неравновесные же процессы в то время смотрели как на исключения, второстепенные детали, не заслуживающие специального изучения.

Ныне ситуация коренным образом изменилась; как раз замкнутые системы теперь рассматривают как сравнительно редкие исключения из правила. При этом было установлено, что в тех открытых системах, что находятся в сильно неравновесных условиях, могут спонтанно возникать такие типы структур, которые способны к самоорганизации, т.е. к переходу от беспорядка, «теплового хаоса», к упорядоченным состояниям. Создатель новой, неравновесной термодинамики Пригожин назвал эти структуры диссипативными, стремясь подчеркнуть парадокс: процесс диссипации (т.е. безвозвратных потерь энергии) играет в их возникновении конструктивную роль. Особое значение в этих процессах имеют флуктуации — случайные отклонения некой величины, характеризующей систему из большого числа единиц, от ее среднего значения (одна из книг Пригожина так и называется — «Самоорганизация в неравновесных системах. От диссипативных структур к упорядочению через флуктуации»).

Одним из простейших случаев такой спонтанной самоорганизации является так называемая неустойчивость Бенара. Если мы будем постепенно нагревать снизу не слишком толстый слой вязкой жидкости, то до определенного момента отвод тепла от нижнего слоя жидкости к верхнему обеспечивается одной лишь теплопроводностью, без конвекции. Однако когда разница температур нижнего и верхнего слоев достигает некоторого порогового значения, система выходит из равновесия и происходит поразительная вещь. В нашей жидкости возникает конвекция, при которой ансамбли из миллионов молекул внезапно, как по команде, приходят в согласованное движение, образуя конвективные ячейки в форме правильных шестиугольников. Это означает, что большинство молекул начинают двигаться с почти одинаковыми скоростями, что противоречит и положениям молекулярно-кинетической теории, и принципу порядка Больцмана из классической термодинамики. Если в классической термодинамике тепловой поток считается источником потерь (диссипации), то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром.

Еще более удивительны явления самоорганизации, происходящие в неравновесных химических системах (например, в так называемых химических часах). Если в ячейках Бенара речь шла о согласованных механических движениях молекул, то здесь мы имеем дело со столь же согласованными, «как по команде», их химическими превращениями. Предположим, что у нас имеется сосуд с молекулами двух сортов — «синими» и «красными». Движение молекул хаотично, поэтому в любой из частей сосуда концентрация «синих» и «красных» молекул будет несколько отклоняться от средней то в одну, то в другую сторону, а общий цвет реакционной смеси должен быть фиолетовым с бесконечными переходами в сторону синего и красного. А вот в химических часах мы увидим нечто совершенно иное: цвет всей реакционной смеси будет чисто-синий, затем он резко изменится на чисто-красный, потом опять на синий и т.д. Как отмечает Пригожин, «столь высокая упорядоченность, основанная на согласованном поведении миллиардов молекул, кажется неправдоподобной, и если бы химические часы нельзя было наблюдать „во плоти“, вряд ли кто-нибудь поверил бы, что такой процесс возможен». (По поводу последнего следует заметить, что первооткрывателю этого типа реакций Б. П. Белоусову пришлось на протяжении многих лет доказывать, что демонстрируемые им — причем именно «во плоти»! — химические часы не являются просто фокусом.) Помимо химических часов, в неравновесных химических системах могут наблюдаться и иные формы самоорганизации: устойчивая пространственная дифференциация (в нашем примере это означало бы, что правая половина сосуда окрасится в красный цвет, а левая — в синий), или макроскопические волны химической активности (красные и синие узоры, пробегающие по фиолетовому фону). Однако для того, чтобы в некой системе начались процессы самоорганизации, она должна быть как минимум выведена из стабильного, равновесного состояния. В ячейках Бенара неустойчивость имеет простое механическое происхождение. Нижний слой жидкости в результате нагрева становится все менее плотным, и центр тяжести смещается все дальше наверх; по достижении же критической точки система «опрокидывается» и возникает конвекция. В химических системах ситуация сложнее. Здесь стационарное состояние системы представляет собой ту стадию ее развития, когда прямая и обратная химические реакции взаимно уравновешиваются и изменения концентрации реагентов прекращаются. Вывести систему из этого состояния очень трудно, а в большинстве случаев — просто невозможно; не зря реакции типа «химических часов» были открыты лишь недавно, в 50-е годы минувшего века (хотя их существование было теоретически предсказано математиком Р. Вольтеррой еще в 1910 году). Для того, чтобы устойчивость стационарного состояния оказалась нарушенной, есть одно необходимое (но не достаточное) условие: в цепи химических реакций, происходящих в системе, должны присутствовать автокаталитические циклы, т.е. такие стадии, в которых продукт реакции катализирует синтез самого себя. А ведь именно автокаталитические процессы, как мы знаем из главы 4, составляют основу такого процесса, как жизнь.

1 ... 13 14 15 16 17 18 19 20 21 ... 75
Перейти на страницу:
На этой странице вы можете бесплатно скачать Удивительная палеонтология. История земли и жизни на ней - Кирилл Еськов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...