Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Научпоп » Высший замысел - Стивен Хокинг

Высший замысел - Стивен Хокинг

Читать онлайн Высший замысел - Стивен Хокинг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 31
Перейти на страницу:

Все известные фундаментальные взаимодействия в природе (природные силы) можно разделить на четыре класса:

1. Гравитация. Это самая слабая из четырех сил, но ее действие простирается на дальние расстояния. Она влияет на всё во Вселенной как тяготение (притяжение). Это означает, что для больших тел все гравитационные воздействия складываются и могут преобладать над другими силами.

2. Электромагнетизм. Это тоже дальнодействующая сила, она гораздо сильнее, чем гравитация, но воздействует только на частицы с электрическим зарядом, отталкивая одноименные заряды и притягивая разноименные. Это означает, что электрические взаимодействия между большими телами гасят друг друга, но на уровне атомов и молекул они преобладают. Электромагнитные силы ответственны за всё в химии и биологии.

3. Слабое ядерное взаимодействие. Оно вызывает радиоактивность и играет определяющую роль в образовании химических элементов внутри звезд и в ранней Вселенной. Однако в повседневной жизни мы не входим в контакт с этой силой.

4. Сильное ядерное взаимодействие. Эта сила удерживает протоны и нейтроны внутри атомного ядра. Она также удерживает от распада сами протоны и нейтроны, что необходимо, поскольку они состоят из еще более мелких частиц — кварков, о которых мы упоминали в главе 3. Сильное ядерное взаимодействие — это источник энергии для Солнца и ядерной энергетики, но с этим взаимодействием, также, как и со слабым, мы непосредственно не сталкиваемся.

Первое из фундаментальных взаимодействий (природных сил), для которого была создана квантовая версия, это электромагнетизм. Квантовая теория электромагнитного поля, называемая квантовой электродинамикой (КЭД), была разработана в 1940-х годах Ричардом Фейнманом и рядом других физиков. КЭД стала моделью для всех квантовополевых теорий. Как мы уже говорили, согласно классическим теориям, силы передаются посредством полей. Но в квантовополевых теориях силовые поля состоят из различных элементарных частиц, названных бозонами. Эти переносящие энергию частицы перемещаются туда-сюда между частицами материи, передавая силу. Частицы материи называются фермионами. Электроны и кварки — это примеры фермионов. Фотон, или частица света, — это пример бозона. Бозон передает электромагнитную силу. Происходит следующее: частица материи, например электрон, испускает бозон (частицу силы) и отскакивает в противоположном направлении, подобно тому как пушка подается назад после выстрела. Частица силы затем сталкивается с другой частицей материи и поглощается ею, изменяя движение этой частицы материи. Согласно КЭД, все взаимодействия между заряженными частицами (частицами, реагирующими на электромагнитную силу) описываются как обмен фотонами.

Предсказания КЭД были проверены и с большой точностью совпали с результатами экспериментов. Но выполнение математических расчетов, необходимых для КЭД, может оказаться затруднительным. Проблема, как мы увидим далее, в том, что когда вы добавляете к вышеупомянутой схеме обмена частицами квантовое требование рассматривать все истории, по которым это взаимодействие может произойти (например, все траектории, по которым силовые частицы могут быть обменяны), то математические расчеты становятся сложными. К счастью, вместе с изобретением нового понятия в квантовых теориях, названного «альтернативные истории» (оно описано в последней главе), Фейнман разработал также лаконичный графический метод учета различных историй — метод, который сегодня используется не только в КЭД, но и во всех квантовополевых теориях.

Графический метод Фейнмана дает нам возможность с помощью простых изображений наглядно показать каждую составляющую в сумме всех возможных историй (или, как еще говорят, в сумме по историям). Эти изображения, названные диаграммами Фейнмана, стали одним из важнейших инструментов современной физики. В КЭД сумму по всем возможным историям можно представить как сумму по диаграммам Фейнмана, подобным тем, что показаны на иллюстрации (с. 121).

Диаграммы Фейнмана. Эти диаграммы иллюстрируют процесс, в котором два электрона разлетаются друг от друга.

На этих диаграммах представлены некоторые из путей, возможных для того, чтобы два электрона рассеяли друг друга с помощью электромагнитной силы; прямые линии на них соответствуют путям электронов, а волнистые — путям фотонов. Считается, что время идет снизу вверх, а точки соединения линий соответствуют излучению или поглощению фотонов электроном. На диаграмме А изображено, как два электрона, сближаясь друг с другом, обмениваются фотоном, а затем каждый продолжает свой путь. Это простейший вариант электромагнитного взаимодействия между двумя электронами, но мы должны рассмотреть все возможные истории. Обратимся к диаграмме В. На ней тоже изображены две сходящиеся линии (сближающиеся электроны) и две расходящиеся (разлетающиеся электроны), но на этой диаграмме, прежде чем разлететься в стороны, электроны обменялись двумя фотонами. Приведенные здесь диаграммы иллюстрируют лишь несколько возможностей, на самом же деле имеется бесконечное количество диаграмм, для которых требуется выполнить математические вычисления.

Диаграммы Фейнмана не только наглядный способ изображения и классификации возможных вариантов взаимодействия электронов. У них имеются правила, позволяющие по линиям и вершинам на каждой диаграмме прочитать их математическое выражение. Скажем, вероятность того, что сходящиеся электроны с данным первоначальным импульсом в итоге разлетятся каждый со своим конечным импульсом, получается суммированием результатов, определенных по каждой из диаграмм Фейнмана. Это довольно трудоемкий процесс, поскольку, как мы уже сказали, этих диаграмм бесконечное множество. Более того, хотя сходящимся и расходящимся электронам присвоены определенные энергия и импульс, частицы в замкнутых контурах внутри диаграммы могут иметь любую энергию и любой импульс. Это важно, так как при вычислении фейнмановской суммы нужно суммировать не только по всем диаграммам, но также и по всем значениям энергии и импульса.

Диаграммы Фейнмана оказывают физикам огромную помощь в наглядном представлении и расчете вероятностей процессов, описываемых КЭД. Но они не могут исправить один из важных недочетов теории: когда вы суммируете вклады от бесконечного множества различных историй, вы получаете бесконечный результат. (Если последовательные элементы в бесконечной сумме убывают достаточно быстро, то сумма может оказаться конечной, но этого, к сожалению, здесь не происходит.) В частности, при сложении диаграмм Фейнмана решение словно бы предполагает, что электрон имеет бесконечную массу и заряд. Это абсурд, так как мы можем измерить массу и заряд и увидеть, что они конечны. Чтобы оперировать с этими бесконечностями, была разработана процедура, названная перенормировкой.

Процесс перенормировки включает в себя вычитание величин, считающихся равными бесконечности и отрицательными, так, чтобы при тщательном математическом расчете сумма отрицательных бесконечных значений и положительных бесконечных значений, которые появляются в теории, почти уравновешивалась, исключая небольшой остаток — конечные наблюдаемые значения массы и заряда. Подобные манипуляции могут показаться чем-то таким, за что на школьном экзамене по математике вам поставили бы неудовлетворительную оценку. И действительно, перенормировка выглядит, с математической точки зрения, сомнительным действием. Одним из последствий является то, что полученные таким методом значения массы и заряда электрона могут оказаться любым конечным числом. Преимущество этого состоит в том, что физики могут подобрать отрицательные бесконечности так, чтобы получить правильный ответ, но неудобство в том, что из-за этого теория не может предсказать массу и заряд электрона. Но когда мы таким путем установили массу и заряд электрона, то можем при помощи КЭД сделать много иных, очень точных, предсказаний, прекрасно согласующихся с наблюдениями, поэтому перенормировка является одной из важнейших составляющих КЭД. Среди первых удач в области КЭД было, например, точное предсказание так называемого лэмбовского сдвига — небольшого изменения в энергии одного из состояний атома водорода, которое было открыто в 1947 году.

Диаграммы Фейнмана. Ричард Фейнман ездил на примечательном автофургоне, разрисованном диаграммами, названными его именем. Эти изображения были сделаны как иллюстрация обсуждавшихся выше диаграмм. Фейнман умер в 1988 году, но фургон все еще цел — он хранится неподалеку от Калифорнийского технологического института, в Южной Калифорнии.

Успех перенормировки в КЭД способствовал попыткам поиска квантовополевых теорий для остальных трех фундаментальных взаимодействий (сил) в природе. Но деление природных сил на четыре класса искусственно и, вероятно, явилось следствием недостатка наших знаний о них. Поэтому ученые стали искать так называемую теорию всего, которая объединила бы все четыре класса в единый закон, сочетающийся с квантовой теорией. Для физики это своего рода Священный Грааль — легендарная чаша, олицетворяющая заветную цель.

1 ... 13 14 15 16 17 18 19 20 21 ... 31
Перейти на страницу:
На этой странице вы можете бесплатно скачать Высший замысел - Стивен Хокинг торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...