Категории
Самые читаемые книги
ЧитаемОнлайн » Компьютеры и Интернет » Компьютерное "железо" » Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук

Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук

Читать онлайн Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 173
Перейти на страницу:

Программный протокол управления потоком XON/XOFF предполагает наличие двунаправленного канала передачи данных. Работает протокол следующим образом: если устройство, принимающее данные, обнаруживает причины, по которым оно не может их дальше принимать, оно по обратному последовательному каналу посылает байт-символ XOFF (13h). Противоположное устройство, приняв этот символ, приостанавливает передачу. Когда принимающее устройство снова становится готовым к приему данных, оно посылает символ XON (11h), приняв который противоположное устройство возобновляет передачу. Время реакции передатчика на изменение состояния приемника по сравнению с аппаратным протоколом увеличивается, по крайней мере, на время передачи символа (XON или XOFF) плюс время реакции программы передатчика на прием символа (рис. 2.14). Из этого следует, что данные без потерь могут приниматься только приемником, имеющим дополнительный буфер принимаемых данных и сигнализирующим о неготовности заблаговременно (имея в буфере свободное место).

Рис. 2.14. Программное управление потоком XON/XOFF

Преимущество программного протокола заключается в отсутствии необходимости передачи управляющих сигналов интерфейса — минимальный кабель для двустороннего обмена может иметь только 3 провода (см. рис. 2.5, а). Недостатком, помимо обязательного наличия буфера и большего времени реакции (снижающего общую производительность канала из-за ожидания сигнала XON), является сложность реализации полнодуплексного режима обмена. В этом случае из потока принимаемых данных должны выделяться (и обрабатываться) символы управления потоком, что ограничивает набор передаваемых символов.

Кроме этих двух распространенных стандартных протоколов, поддерживаемых и ПУ, и ОС, существуют и другие.

2.5. Микросхемы асинхронных приемопередатчиков

В СОМ-портах преобразование параллельного кода в последовательный для передачи и обратное преобразование при приеме данных выполняют специализированные микросхемы UART (Universal Asynchronous Receiver-Transmitter — универсальный асинхронный приемопередатчик). Эти же микросхемы формируют и обрабатывают управляющие сигналы интерфейса. СОМ-порты IBM PC XT/AT базируются на микросхемах, совместимых на уровне регистров с UART i8250 — 8250/16450/16550А. Это семейство представляет собой усовершенствование начальной модели, направленное на повышение быстродействия, снижение потребляемой мощности и загрузки процессора при интенсивном обмене. Отметим, что:

♦ 8250 имеет ошибки (появление ложных прерываний), учтенные в XT BIOS;

♦ 8250А — ошибки исправлены, но в результате потеряна совместимость с BIOS; эта микросхема работает в некоторых моделях AT, но непригодна для скорости 9600 бит/с;

♦ 8250В — исправлены ошибки 8250 и 8250A, восстановлена ошибка в прерываниях — возвращена совместимость с XT BIOS; работает в AT под DOS (кроме скорости 9600 бит/с).

Микросхемы 8250x имеют невысокое быстродействие по обращениям со стороны системной шины. Они не допускают обращения к своим регистрам в смежных шинных циклах процессора — для корректной работы с ними требуется введение программных задержек между обращениями CPU. В компьютерах класса AT применяют микросхемы UART перечисленных ниже модификаций.

♦ 16450 — быстродействующая версия 8250 для AT. Ошибок 8250 и полной совместимости с XT BIOS не имеет.

♦ 16550 — развитие 16450. Может использовать канал DMA для обмена данными. Имеет FIFO-буфер, но некорректность его работы не позволяет им воспользоваться.

♦ 16550А — имеет работающие 16-байтные FIFO-буферы приема и передачи и возможность использования DMA. Именно этот тип UART должен применяться в AT при интенсивных обменах на скоростях 9600 бит/с и выше. Совместимость с этой микросхемой обеспечивает большинство микросхем контроллеров портов ввода-вывода, входящих в современные чипсеты.

Микросхемы UART 16550А с программной точки зрения представляют собой набор регистров, доступ к которым определяется адресом (смещением адреса регистра относительно базового адреса порта) и значением бита DLAB (бита 7 регистра LCR). В адресном пространстве микросхема занимает 8 смежных адресов. Список регистров UART 16550A и способы доступа к ним приведены в табл. 2.4. Микросхемы 8250 отличаются отсутствием регистра FCR и всех возможностей FIFO и DMA.

Таблица 2.4. Регистры UART 16550A

Доступ Регистр Чтение/запись R/W Смещение DLAB Имя Название 0h 0 THR Transmit Holding Register WO 0h 0 RBR Receiver Buffer Register RO 0h 1 DLL Divisor Latch LSB R/W 1h 1 DIM Divisor Latch MSB R/W 1h 0 IER Interrupt Enable Register R/W 2h x IIR Interrupt Identification Register RO 2h x FOR FIFO Control Register WO 3h x LCR Line Control Register R/W 4h x MCR Modem Control Register R/W 5h x LSR Line Status Register R/W¹ 6h x MSR Modem Status Register R/W¹ 7h x SCR Scratch Pad Register R/W

¹ Некоторые биты допускают только чтение. Запись в регистр может привести к сбою протокола.

ТHR — промежуточный регистр данных передатчика (только для записи). Данные, записанные в регистр, будут пересланы в выходной сдвигающий регистр (когда он будет свободен), из которого поступят на выход при наличии разрешающего сигнала CTS. Бит 0 передается (и принимается) первым. При длине посылки менее 8 бит старшие биты игнорируются.

RBR — буферный регистр принимаемых данных (только для чтения). Данные, принятые входным сдвигающим регистром, помещаются в регистр RBR, откуда они могут быть считаны процессором. Если к моменту окончания приема очередного символа предыдущий не был считан из регистра, фиксируется ошибка переполнения. При длине посылки менее 8 бит старшие биты в регистре имеют нулевое значение.

DLL — регистр младшего байта делителя частоты.

DLM — регистр старшего байта делителя частоты. Делитель определяется по формуле D=115200/V, где V — скорость передачи, бит/с. Входная частота синхронизации 1,8432 МГц делится на заданный коэффициент, после чего получается 16-кратная частота передачи данных.

IER — регистр разрешения прерываний. Единичное значение бита разрешает прерывание от соответствующего источника.

Назначение бит регистра IER:

♦ биты [7:4]=0 — не используются;

♦ бит 3 — Mod_IE — по изменению состояния модема (любой из линий CTS, DSR, RI, DCD);

♦ бит 2 — RxL_IЕ — по обрыву/ошибке линии;

♦ бит 1 — TxD_IE — по завершении передачи;

♦ бит 0 — RxD_IЕ — по приему символа (в режиме FIFO — прерывание по тайм-ауту).

IIR — регистр идентификации прерываний и признака режима FIFO (только для чтения). Для упрощения программного анализа UART выстраивает внутренние запросы прерывания по четырехуровневой системе приоритетов. Порядок приоритетов (по убыванию): состояние линии, прием символа, освобождение регистра передатчика, состояние модема. При возникновении условий прерывания UART указывает на источник с высшим приоритетом до тех пор, пока он не будет сброшен соответствующей операцией. Только после этого будет выставлен запрос с указанием следующего источника. Ниже описано назначение бит регистра IIR.

1 ... 13 14 15 16 17 18 19 20 21 ... 173
Перейти на страницу:
На этой странице вы можете бесплатно скачать Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...