Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Энциклопедии » Большая Советская энциклопедия (ГЕ) - БСЭ БСЭ

Большая Советская энциклопедия (ГЕ) - БСЭ БСЭ

Читать онлайн Большая Советская энциклопедия (ГЕ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 165 166 167 168 169 170 171 172 173 ... 276
Перейти на страницу:

  В природных процессах разделения ионы и атомы сортируются по своим размерам. Кристаллические решётки главных породообразующих минералов принимают одни ионы (или атомы) и не принимают другие, в зависимости от их величины, заряда и др. свойств. Если ионы разновалентны, но имеют близкий размер Ri, в решётку чаще всего входит ион с большим зарядом. Если ионы имеют одинаковую валентность и по размеру различаются не больше чем на 15%, они часто изоморфно замещаются в кристаллических решётках; происходит замещение атома атомом, иона ионом или группы атомов группой атомов, в зависимости от типа решётки, размеров Ri, заряда и т. д. (см. Изоморфизм). Изоморфное замещение играет огромную роль в распределении элементов по различным минералам. Использование Ri в Г. объяснило причину ассоциации таких разнородных элементов, как U, Th и редкоземельных элементов (в минералах торианит, иттриалит и др.), а также постоянную ассоциацию редкоземельных элементов. При деформации одного иона другим в соединении, имеющем катион малого радиуса и анион большого радиуса, возникает т. н. поляризация, которая нарушает физико-химические свойства вещества — твёрдость, летучесть и многие др. Отношение Ri катиона/ Ri аниона определяет число атомов, окружающих центральный атом в соединении, — его координацию, т. е. координационное число. Оно в свою очередь указывает на характер и строение кристаллической решётки. Координационное число может изменяться в зависимости от условий образования минерала. Кристаллические решётки минералов имеют различную структуру — от очень простых и симметричных построек из плотно упакованных шаров до весьма сложных с низкой степенью симметрии. При кристаллизации атомы и ионы стремятся расположиться в кристаллической решётке таким образом, чтобы была минимальной энергия кристаллической решётки. На основе всех этих данных была создана геохимическая классификация элементов, опирающаяся на физико-химические свойства химических элементов (табл. 3).

  Табл. 3. — Геохимическая классификация химических элементов

  С открытием изотопов стала развиваться Г. изотопов — изучение процессов разделения изотопов химических элементов в природных процессах, особенно лёгких атомов Н, С, О, N, S и др. Этим методом часто удаётся установить способ и условия разделения химических элементов и образования конкретных минералов и рудных залежей

  Геохимические процессы разделения элементов на Земле поддерживаются прежде всего теплом, генерируемым радиоактивными элементами (радиогенное тепло), гравитационной энергией. На поверхности Земли значительную роль играет энергия солнечных лучей, которая, в частности, трансформируется живым веществом в химическую энергию нефтей и углей.

  Геохимические процессы. Первичное разделение холодного недифференцированного вещества Земли на оболочки произошло под влиянием тепла адиабатического сжатия планеты и радиогенного тепла. В мантии Земли на различных глубинах, особенно в астеносфере, возникали многочисленные расплавленные очаги. Разделение на оболочки шло путём зонного плавления, которое не требует полного расплавления мантии. Силикатное вещество планеты разделялось на тугоплавкую фазу — ультраосновные породы верхней мантии, и легкоплавкую фазу — основные породы (базальты) земной коры. Легкоплавкое вещество проплавляло кровлю магматической камеры, а тугоплавкое кристаллизовалось на дне камеры; т. о. легкоплавкое вещество перемещалось вверх к поверхности Земли. При этом метасиликаты инконгруентно разлагались на ортосиликаты и кремнекислоту, обогащенную химическими элементами, понижающими температуру плавления: щелочными элементами, Si, Ca, Al, U, Th, Sr и др. редкими литофильными элементами. Вещества, повышающие температуру плавления (Mg. Fe, Ni, Co, Cr и др.), сохранились по преимуществу в тугоплавкой фазе, т. е. остались в мантии Земли. Вместе с зонным плавлением шёл процесс дегазации верхней мантии.

  Процессы выплавления и дегазации вещества мантии имеют периодический характер. После того как произошёл вынос тепла и вещества из глубин на поверхность Земли, требовалось время на новое разогревание очага. С таким геохимическим циклом связан весь ритм тектоно-магматической и вулканической деятельности и метаморфических преобразований. Этот процесс шёл также на Луне и, по-видимому, на всех планетах земного типа. Химическая эволюция Земли поддерживается и регулируется непрерывным процессом выплавления и дегазации вещества мантии за счёт энергии радиоактивного распада.

  Вещество мантии Земли (перидотиты, дуниты и др. ультраосновные породы) имеет химический состав, приближающийся к метеоритному (табл. 4).

  Табл. 4 — Химический состав горных пород Земли, Луны и метеоритов

Господствующие в мантии высокие температуры и давления приводят к полиморфным изменениям минералов, например к образованию стишовита, т. е. кварца с плотностью 4350 кг/м3 (при нормальном давлении и температуре), и т. п. Благодаря этому вещество мантии разделяется на зоны с разной плотностью. Вещество верхней мантии проникает к поверхности на материках в дунитовых поясах, богатых хромитами, платиноидами, высокотемпературными сульфидами, в океанах — в рифтовых долинах срединноокеанических хребтов.

  Ранее, ссылаясь на наличие сульфидных руд в земной коре, геологи допускали существование в мантии сульфидной оболочки. Однако определение изотопного состава свинца из разных сульфидных руд показало их различный абсолютный возраст; следовательно, отторжение сульфидов из горных пород происходило в разное время, так что гипотеза сульфидной оболочки лишена достаточного основания. Процесс образования металлического сплава Fe — Ni, из которого состоит ядро Земли, наименее изучен. Вероятно, ядро формировалось в процессах агломерации в протопланетном облаке и далее при адиабатическом сжатии Земли, что продолжалось длительное время.

  Над мантией располагается земная кора, которая отделяется от вещества мантии границей Мохоровичича (см. Мохоровичича поверхность). Выделяют два типа земной коры: материковую (континентальную) и океаническую. Мощность континентальной коры достигает в среднем 35—40 км, а океанической — 6—8 км. Примитивные (толеитовые) базальты океанической коры — более сложная система, чем вещество каменных метеоритов; они состоят по крайней мере из 4 главных компонентов: MgO, SiO2, FeO, Al2O3. В них отношение Si/Mg = 6,5, т. е. они не солнечного состава. Базальты земной коры, лунные породы (с поверхности лунных «морей») и эвкриты (базальтические каменные метеориты) имеют идентичный состав и одинаковую офитовую структуру. Исключительную роль в силикатных и др. системах играют вода и др. летучие, понижающие точку плавления системы. Наиболее существенное влияние на магматические процессы оказывает вода в состоянии, близком к надкритическому.

  В мантии под вулканами методами сейсмологии обнаружены камеры, заполненные жидкой магмой. Излияние базальтов сопровождается выделением водяного пара — около 7% по массе (20% по объёму) от излившегося базальта — и кислых дымов и газов NH (CO2, HF, HCl, S, SO2). В высокотемпературной стадии остывания базальта (600—800°С) выделяются главным образом CO2, HF, HCl. При средних температурах (около 200°С) также и соединения серы. При низких температурах и в поствулканической (фумарольной) стадии выделяются CH4, 4Cl, Н3ВО3, CO2 и др. газы, а также минерализованные растворы. Образование CO2, СО, CH4 — результат реакции в магме углерода с H2O при разных температурах и давлениях. Этот процесс сопровождается частичным разделением изотопов углерода — утяжелением углерода (повышением содержания С13) в CO2, алмазах и карбонатитах (CaCO3 кимберлитовых трубок) по сравнению с углеродом др. горных пород. Базальтовая лава при охлаждении подвергается фракционной кристаллизации с образованием различных магматических пород, имеющих общие признаки. В магматической стадии дифференциации возможны ликвация (например, отделение от силикатов высокотемпературных Cu — Ni — Fe сульфидов) и газовый перенос. В ранней стадии фракционной кристаллизации магмы могут образоваться магнетит и титаномагнетит, как следствие окисления в магме Fe2+ ® Fe3+; магнетит не растворяется в силикатном расплаве и увлекает с собой Ti в силу близости Ri Fe3+ (0,65) и Ti4+ (0,60). В стадии главной кристаллизации образуются плагиоклазы от Лабрадора до олигоклаза и многие др. алюмосиликаты. По мере остывания происходит накопление в расплаве более легкоплавких и летучих соединений, на известной стадии вступающих в реакцию с ранее выделившимися более высокотемпературными соединениями (реакционный принцип Боуэна). В этом отборочном механизме в остаточном расплаве концентрируются ионы, которые не вошли в породообразующие минералы из-за своих больших или очень малых Ri. С этими остаточными расплавами связывают происхождение богатых редкими элементами пегматитов и др. горных пород.

1 ... 165 166 167 168 169 170 171 172 173 ... 276
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская энциклопедия (ГЕ) - БСЭ БСЭ торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...