Категории
Самые читаемые книги
ЧитаемОнлайн » Детская литература » Детская образовательная литература » Новые рассказы Рассеянного Магистра - Владимир Левшин

Новые рассказы Рассеянного Магистра - Владимир Левшин

Читать онлайн Новые рассказы Рассеянного Магистра - Владимир Левшин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 34
Перейти на страницу:

— Сперва надо подобрать подходящее ведёрко, не то не едать нам киселя.

— Ну, тогда подберём его поскорее! — волновался Нулик. — Кто просит слова?

— Кто же ещё? Разумеется, ты, — засмеялся Сева.

— Ошибаешься — я киселя прошу! А слова просит. — Нулик обвёл глазами присутствующих, стараясь отгадать, кто решит задачу без проволочек.

— Слова прошу я! — сказала Таня. — Предлагается вычислить радиус круга, вписанного в прямоугольный треугольник. При этом известно только то, что гипотенуза равна 13 дециметрам, а сумма обоих катетов — 17 дециметрам.

Таня вычертила на бумажке прямоугольный треугольник и обозначила его стороны буквами а, b и с.

— Нет, нет! — запротестовал Нулик. — Так не годится. Твоя гипотенуза — сразу видно — меньше 13 дециметров, да и катеты тоже…

— Числа тут ни при чём, — отмахнулась Таня. — Вычислить радиус вписанного круга можно при любых данных.

— С той оговоркой, что сумма катетов всегда больше гипотенузы, — тихо подсказал Олег.

— Конечно, — кивнула Таня. — Итак, вписываю в прямоугольный треугольник круг. Пусть его радиус равен r.

— Раз числа ни при чём, пусть будет r, — согласился Нулик.

Таня провела три радиуса в точки касания круга со сторонами треугольника.

— Прежде чем решать задачу, — сказала она, — заметьте, что точки касания делят стороны треугольника на две части Кроме того, очень важно вспомнить, что радиус, проведённый в точку касания, всегда перпендикулярен касательной. Стало быть, после того как мы провели радиусы в точки касания, при вершине прямого угла у нас образовался квадрат. А у квадрата все стороны между собой равны. Отсюда следует, что катет а разделился на части r и а — r, а катет b — на части r и b — r. Остаётся выяснить немногое: на какие части точка касания разделила гипотенузу. Кто хочет высказаться?

Сева почтительно привстал

— Позвольте мне, профессор. Надеюсь, всем известно, что касательные к кругу, проведённые из одной точки, равны между собой?

— Всем известно! — буркнул Нулик, нетерпеливо барабаня пальцами по столу. — Только для чего это надо?

— А для того, что отсюда сразу ясно; гипотенуза разделилась в точке касания на отрезки а — r и b — r. Теперь мы можем сказать, что гипотенуза равна сумме двух отрезков. а — r и b — r, то есть с = а — r + b — r. А уж отсюда ничего не стоит вывести, что диаметр круга равен сумме катетов минус гипотенуза, то есть

— Как просто! — захихикал Нулик. — Но всё-таки проверим. Значит, с у нас равно 13, а (а + b) равно 17. Тогда 2r = 17–13, то есть 4 дециметрам. А ну, налейте-ка мне тарелочку молочного киселя.

Когда тарелки опустели, президент сказал, довольно потирая руки:

— Ну вот, кисель исчерпан и повестка дня тоже.

— Ничего подобного, — возразил Олег. — Мы ещё ничего не сказали о задаче, которую Единичка задала Магистру.

— Это когда они летели над Бамбуковым океаном? — вспомнил Нулик. — У Магистра ещё компас сломался…

— Да нет, компас у него наверняка был в полной исправности.

— Почему ты думаешь? — удивился Нулик. — Ведь стрелка вертелась из стороны в сторону без всякого смысла…

— Это не стрелка вертелась. Это Единичка повернула карту на 90 градусов. А стрелка компаса всегда направлена в одну и ту же сторону — одним концом на северный магнитный полюс Земли, другим — на южный.

— Полюс, это там, где все меридианы пересекаются? — спросил Нулик, желая, очевидно, похвастаться своей эрудицией.

— Меридианы пересекаются на географическом полюсе, — сказал Олег, — а магнитный, полюс, на который указывает стрелка компаса, чуть-чуть с ним не совпадает. Так что смешивать полюс географический с магнитным не стоит. Но вернёмся всё-таки к Единичкиной задаче. По-моему, очень любопытная задача.

— Не такая уж, наверное, любопытная, если Магистр решил её единым махом, — сказал президент пренебрежительно.

— Решил, да неправильно. Ведь девять в кубе — это 729, а сумма шести в кубе и восьми в кубе всего только 728.

— Не придирайся! — заартачился Нулик. — Подумаешь, ошибся человек на единицу! Можно, поди, подобрать и такие три числа, чтобы куб одного был в точности равен сумме кубов двух других.

— В том-то и дело, что нельзя.

— Это почему же?

Олег развёл руками.

— Прошу прощения, ваше президентство, но тут дело тонкое.

Президент обернулся в мою сторону:

— Правда?

Я кивнул.

— Да, брат, ты коснулся проблемы, над которой бились многие талантливые учёные, а всё без толку… Точнее, почти без толку. Эта проблема известна под именем великой теоремы Ферма. В молодости я очень ею увлекался…

Глаза президента сверкнули.

— Расскажите! — потребовал он.

— Расскажите, расскажите! — поддержали остальные.

— Но для этого потребовалось бы целое заседание, — беспомощно отнекивался я.

— В таком случае, — объявил президент, — назначаю на послезавтра внеочередное заседание КРМ, посвященное великой теореме Ферма!

Этим широковещательным анонсом и закончилось наше сборище.

ВНЕОЧЕРЕДНОЕ ЗАСЕДАНИЕ КРМ,

героем которого был я, естественно, происходило у меня дома. Когда все уселись, я начал свой рассказ без всякого предисловия.

— Представьте себе, что сейчас 1923 год. Москва, Замоскворечье. У крыльца одноэтажного домика стоит юноша и гадает нажать кнопку звонка или вернуться подобру-поздорову домой? Этот юноша — я.

А в старом одноэтажном особнячке живёт кудесник — заслуженный профессор математики Александр Васильевич Васильев. Боже мой, какие замечательные книжки написал этот человек! Вот только что вышла его последняя работа. «Целое число». Эту книгу можно читать не отрываясь, забыв обо всём на свете, словно то не сухая математика, а по крайней мере…

— …«Три Мушкетёра»! — подсказал Нулик.

Таня сделала ему страшные глаза, и он смущённо умолк.

— Подумать только, числа, которые ты всегда забывал и путал, потому что они все на одно лицо, — эти числа, оказывается, имеют самые различные характеры, привязанности, капризы. Потому и названия у них такие необыкновенные совершенные, дружественные, мнимые. А вот числа, которые называются простыми, на самом деле не так просты. Хотя Эвклид доказал, что числам этим несть числа, а всё-таки до сих пор никто не может докопаться, по какому закону они распределяются среди других натуральных чисел. Да, числа — народ загадочный. Но Александр Васильевич Васильев с ними на короткой ноге. Из его-то книги и узнал я впервые о великой теореме Ферма. На первый взгляд теорема кажется совершенно простой. Но доказательство её так и не найдено. И это несмотря на то, что искали его многие замечательные математики последних трёх столетий. Достаточно упомянуть хотя бы петербургского академика Леонарда Эйлера, соратника великого Ломоносова. Правда, поиски Эйлера всё-таки увенчались некоторым успехом — он доказал справедливость теоремы Ферма для частного случая.

— Что ж это за неуловимая теорема такая? — снова не удержался президент.

— Сейчас объясню. Вы ведь уже, кажется, знаете, что всегда можно подобрать целые числа так, чтобы сумма квадратов двух из них была равна квадрату третьего.

— Да, да, — встрепенулся Сева, — например, 32 + 42 = 52.

— Или 52 + 122 = 132, — добавила Таня.

— Совершенно верно, — подтвердил я. — Таких числовых троек бесконечно много. Между прочим, равенство а2 + b2 = с2 связывается обычно с теоремой Пифагора. Что же касается Севиного примера — 3, 4 и 5, то эта тройка чисел была известна ещё в Древнем Египте, более 4000 лет назад.

Но вот, оказывается, нельзя подобрать три целых числа, чтобы сумма кубов двух из них равнялась кубу третьего. Подобрать их нельзя также и для четвёртой, и для пятой, и вообще для любой другой степени. Иначе говоря, равенство an + bn = cn невозможно, если п больше двух. Это и есть великая теорема Ферма, возникшая в первой половине семнадцатого века. Французский юрист и математик Пьер Ферма изложил её на полях книги «Арифметика», написанной древнегреческим математиком Диофантом, который жил более чем за 1000 лет до Ферма.

— А сам-то Ферма доказал свою теорему? — спросил Нулик.

— По его собственным уверениям, доказал. Мало того, он утверждал, что доказательство необычайно интересное. Но никаких следов этого доказательства не осталось. Во всяком случае, на полях Диофантовой книги его нет. То ли потому, что, по словам самого Ферма, там не хватило места для подробных рассуждений, то ли сам Ферма впоследствии усомнился в правильности своего доказательства… Так пли иначе, тайна теоремы Ферма остаётся тайной по сей день.

1 ... 12 13 14 15 16 17 18 19 20 ... 34
Перейти на страницу:
На этой странице вы можете бесплатно скачать Новые рассказы Рассеянного Магистра - Владимир Левшин торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...