Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (МО) - БСЭ БСЭ

Большая Советская Энциклопедия (МО) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (МО) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 310
Перейти на страницу:

  Для твёрдых деформируемых тел особенности М. ф. тоже зависят от свойств этих тел и характера рассматриваемых задач. Так, при моделировании равновесия однородных упругих систем (конструкций), механические свойства которых определяются модулем упругости (модулем Юнга) Е и безразмерным Пуассона коэффициентом n, должны выполняться 3 условия подобия:

где g — ускорение силы тяжести (g = rg — удельный вес материала). В естественных условиях g м = g н = g , и получить полное подобие при l м ¹ lн можно, лишь подобрав для модели специальный материал, у которого rм , Е м и n м будут удовлетворять первым двум из условий (3), что практически обычно неосуществимо.

  В большинстве случаев модель изготовляется из того же материала, что и натура. Тогда rм = rн , Е м = Е н и второе условие даёт g м l м = g н l н . Когда весовые нагрузки существенны, для выполнения этого условия прибегают к т. н. центробежному моделированию, т. е. помещают модель в центробежную машину, где искусственно создаётся приближённо однородное силовое поле, позволяющее получить g м > g н и сделать l м < l н . Если же основными являются другие нагрузки, а весом конструкции и, следовательно, учётом её удельного веса g = rg можно пренебречь, то приближённое М. ф. осуществляют при g м = g н = g , удовлетворяя лишь последнему из соотношений (3), которое даёт F м /l 2 м = F н /l 2 н , следовательно, нагрузки на модель должны быть пропорциональны квадрату её линейных размеров. Тогда модель будет подобна натуре и если, например, модель разрушается при нагрузке F кр , то натура разрушается при нагрузке F кр l н /l м . Неучёт в этом случае весовых нагрузок даёт следующее. Поскольку эти нагрузки имеют значения gl 3 , а последнее из условий (3) требует пропорциональности нагрузок Р , то при l м < l н весовая нагрузка на модель будет меньше требуемой этим условием, т. е. М. ф. не будет полным и модель, как недогруженная, будет прочнее натуры. Это обстоятельство тоже можно учесть или теоретическим расчётом или дополнительными экспериментами.

  Одним из видов М. ф., применяемым к твёрдым деформируемым телам, является поляризационно-оптический метод исследования напряжений, основанный на свойстве ряда изотропных прозрачных материалов становиться под действием нагрузок (т. е. при деформации) анизотропными, что позволяет исследовать распределение напряжений в различных деталях с помощью их моделей из прозрачных материалов.

  При М. ф. явлений в других непрерывных средах соответственно изменяются вид и число критериев подобия. Так, для пластичных и вязкопластичных сред в число этих критериев наряду с параметрами Фруда, Струхаля и модифицированным параметром Рейнольдса входят параметры Лагранжа, Стокса, Сен-Венана и т. д.

  При изучении процессов теплообмена тоже широко используют М. ф. Для случая переноса тепла конвекцией определяющими критериями подобия являются Нуссельта число Nu = al / l, Прандтля число Pr = n /a , Грасхофа число Gr = bgl 3 DT /n 2 , а также число Рейнольдса Re , где a — коэффициент теплоотдачи, а — коэффициент температуропроводности, # — коэффициент теплопроводности среды (жидкости, газа), n — кинематический коэффициент вязкости, b — коэффициент объёмного расширения, DТ — разность температур поверхности тела и среды. Обычно целью М. ф. является определение коэффициента теплоотдачи, входящего в критерий Nu , для чего опытами на моделях устанавливают зависимость Nu от других критериев. При этом в случае вынужденной конвекции (например, теплообмен при движении жидкости в трубе) становится несущественным критерий Gr , а в случае свободной конвекции (теплообмен между телом и покоящейся средой) — критерий Re . Однако к значительным упрощениям процесса М. ф. это не приводит, особенно из-за критерия Pr , являющегося физической константой среды, что при выполнении условия Pr м = Pr н практически исключает возможность использовать на модели среду, отличную от натурной. Дополнительные трудности вносит и то, что физические характеристики среды зависят от её температуры. Поэтому в большинстве практически важных случаев выполнить все условия подобия не удаётся; приходится прибегать к приближённому моделированию. При этом отказываются от условия равенства критериев, мало влияющих на процесс, а др. условиям (например, подобие физических свойств сред, участвующих в теплообмене) удовлетворяют лишь в среднем. На практике часто используют также т. н. метод локального теплового моделирования, идея которого заключается в том, что условия подобия процессов для модели и натуры выполняются только в той области модели, где исследуется процесс теплообмена. Например, при исследовании теплоотдачи в системе однотипных тел (шаров, труб) в теплообмене на модели может участвовать лишь одно тело, на котором выполняют измерения, а остальные служат для обеспечения геометрического подобия модели и натуры.

  В случаях переноса тепла теплопроводностью (кондукцией) критериями подобия являются Фурье число Fo = at 0 /l 2 и число Био Bi = al /l, где t 0 — характерный промежуток времени (например, период). Для апериодических процессов (нагревание, охлаждение) t 0 обычно отсутствует и параметр Fo выпадает, а отношение at/l 2 определяет безразмерное время. При М. ф. таких процессов теплообмена удаётся в широких пределах изменять не только размеры модели, но и темп протекания процесса.

  Однако чаще для исследования процессов переноса тепла теплопроводностью применяют моделирование аналоговое .

  Электродинамическое моделирование применяется для исследования электромагнитных и электромеханических процессов в электрических системах. Электродинамическая модель представляет собой копию (в определённом масштабе) натурной электрической системы с сохранением физической природы основных её элементов. Такими элементами модели являются синхронные генераторы, трансформаторы, линии передач, первичные двигатели (турбины) и нагрузка (потребители электрической энергии), но число их обычно значительно меньше, чем у натурной системы. Поэтому и здесь моделирование является приближённым, причём на модели по возможности полно представляется лишь исследуемая часть системы.

  Особый вид М. ф. основан на использовании специальных устройств, сочетающих физические модели с натурными приборами. К ним относятся стенды испытательные для испытания машин, наладки приборов и т. п., тренажеры для тренировки персонала, обучаемого управлению сложными системами или объектами, имитаторы, используемые для исследования различных процессов в условиях, отличных от обычных земных, например при глубоком вакууме или очень высоких давлениях, при перегрузках и т. п. (см. Барокамера , Космического полёта имитация ).

  М. ф. находит многочисленные приложения как при научных исследованиях, так и при решении большого числа практических задач в различных областях техники. Им широко пользуются в строительном деле (определение усталостных напряжений, эксплуатационных разрушений, частот и форм свободных колебаний, виброзащита и сейсмостойкость различных конструкций и др.); в гидравлике и в гидротехнике (определение конструктивных и эксплуатационных характеристик различных гидротехнических сооружений, условий фильтрации в грунтах, моделирование течений рек, волн, приливов и отливов и др.); в авиации, ракетной и космической технике (определение характеристик летательных аппаратов и их двигателей, силового и теплового воздействия среды и др.); в судостроении (определение гидродинамических характеристик корпуса, рулей и судоходных двигателей, ходовых качеств, условий спуска и др.); в приборостроении; в различных областях машиностроения, включая энергомашиностроение и наземный транспорт; в нефте- и газодобыче, в теплотехнике при конструировании и эксплуатации различных тепловых аппаратов; в электротехнике при исследованиях всевозможных электрических систем и т. п.

1 ... 12 13 14 15 16 17 18 19 20 ... 310
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (МО) - БСЭ БСЭ торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...