Энциклопедия «Техника» (с иллюстрациями) - Александр Горкин
Шрифт:
Интервал:
Закладка:
АСБÉСТ, собирательное название группы тонковолокнистых (до 0.5 мкм) минералов класса гидросиликатов, которые образовались из изверженных пород под действием термальных вод. Они обладают высокой жаропрочностью (температура плавления ок. 1500 °C), поэтому ещё в древности получили название «асбест», от древнегреческого asbestos – неугасимый, неразрушимый. В Средней Азии асбест называли фитильным камнем и использовали в светильниках в роли «вечного» фитиля. Не зная точного происхождения волокон, в Средние века думали, напр., что асбест – это шерсть саламандры или перья птицы Феникс. Волокна пряли, это нашло отражение в народном названии асбеста – «горный лён». Из асбеста делали скатерти, которые вместо стирки помещали для очистки в горячую печь. В 17–19 вв. из асбеста, добываемого в Италии, изготавливали бумагу, пригодную для письма, делали кошельки и плели кружева. В 1885 г. в России, недалеко от Екатеринбурга, было открыто Баженовское асбестовое месторождение – крупнейшее в мире и по сей день. Крупные месторождения асбеста находятся также в Канаде и ЮАР. В строительстве асбест начал применяться с кон. 19 в. в смеси с цементом. Волокна асбеста по прочности на растяжение превосходят стальную проволоку, обладают высокой адсорбционной способностью (поэтому хорошо сцепляются с цементом), стойки к кислотам и щелочам, обладают хорошими тепло – и электроизоляционными свойствами. Всё это делает асбест широко распространённым в строительстве материалом. См. Асбестоцементные конструкции и изделия.
АСБЕСТОЦЕМÉНТНЫЕ КОНСТРУ́КЦИИ И ИЗДÉЛИЯ, изготовлены из асбестоцемента – строительного материала, состоящего из водной смеси цемента и асбеста. Асбестоцемент применяется в строительстве с кон. 19 в. Из него изготовляли блоки и плиты, которые легко разрезались пилой, обрабатывались топором, в них можно было забивать гвозди, они не боялись огня и обладали электроизоляционными свойствами. Но из-за большого расхода асбеста эти изделия были экономически невыгодны. Более рентабельным оказалось предложенное в 1900 г. чехом Л. Гатчиком производство тонких листов из смеси асбеста с цементом с использованием картоноделательных машин. Производство асбестоцементных изделий к кон. 20 в. стало крупной отраслью индустрии. Это более 3 тыс. наименований в самых разных отраслях техники (строительство, ракетостроение, противопожарная техника и т. д.). На основе асбестоцемента изготовляется много видов кровельного материала, дренажные и канализационные трубы, негорючие ткани и т. д. Эти изделия долговечны, водонепроницаемы, огнестойки, морозостойки, не подвержены химическому воздействию. Наиболее распространены асбестоцементные конструкции в строительстве, напр. для покрытия зданий (каркасные конструкции), создания внутренних перегородок, облицовки лифтовых шахт и т. п. Большинство промышленных материалов на основе асбеста не имеют альтернативы.
Вопрос экологичности асбестоцемента пока остаётся открытым. Бытует мнение, что асбест и изделия из него опасны для здоровья человека. Тончайшие, невидимые глазом асбестовые волокна, попадая в организм, вызывают лёгочные заболевания. Такие заболевания действительно возможны у людей, работающих непосредственно с асбестом. Поэтому на асбестовых предприятиях очистка воздуха является важнейшим условием безопасного труда. Что же касается готовых изделий из асбеста, то, защищённые двумя-тремя слоями краски, они совершенно не опасны, а безвредность асбестоцементных труб достоверно доказана медиками.
АСТРОНÁВТ, то же, что космонавт.
АСФАЛЬТОБЕТÓН (асфальтовый бетон), искусственный строительный материал, получаемый в результате уплотнения и затвердевания специально подобранной смеси щебня (гравия), песка, минерального порошка и битума. Применяют для устройства покрытий дорог, аэродромов, плоских кровель, в гидротехническом строительстве. В зависимости от температуры, при которой укладывают и уплотняют смесь в покрытии, и вязкости применяемого битума различают горячий, тёплый и холодный асфальтобетоны. По максимальной крупности зёрен щебня (гравия) асфальтовый бетон подразделяется на крупнозер-нистый (зёрна до 40 мм), среднезернистый (до 25 мм), мелкозернистый (до 15 мм) и песчаный (до 5 мм). В строительной практике, когда невозможно использовать тяжёлые катки, применяют также литой асфальтобетон. Если в качестве вяжущего вещества вместо битума используется дёготь, то получаемый материал называется дёгтебетоном.
АСФАЛЬТОБЕТОНОУКЛÁДЧИК, самоходная дорожно-строительная машина на колёсном или гусеничном ходу, предназначенная для распределения, укладки и предварительного уплотнения асфальтобетона и других битумоминеральных смесей. Применяется при строительстве и ремонте автомобильных дорог, аэродромных покрытий и т. д. Асфальтобетоноукладчик на ходу принимает битумную массу из самосвала в свой бункер. Скребковый транспортёр распределяет массу по ширине дорожного основания. Тут же трамбующий брус машины предварительно уплотняет асфальтобетонную массу, а тонкий стальной лист со шлифованной поверхностью – выравнивающая плита – окончательно выглаживает её.
Асфальтобетоноукладчик
ÁТОМНАЯ ЭЛЕКТРОСТÁНЦИЯ (АЭС), электростанция, на которой ядерная энергия преобразуется в электрическую. Первичным источником энергии на АЭС служит ядерный реактор, в котором протекает управляемая цепная реакция деления ядер некоторых тяжёлых элементов. Выделяющаяся при этом теплота преобразуется в электрическую энергию, как правило, так же, как на обычных тепловых электростанциях (ТЭС). Ядерный реактор работает на ядерном топливе, в основном на уране-235, уране-233 и плутонии-239. При делении 1 г изотопов урана или плутония выделяется 22.5 тыс. кВт·ч энергии, что соответствует сжиганию почти 3 т условного топлива.
Первая в мире опытно-промышленная АЭС мощностью 5 МВт была построена в 1954 г. в России в г. Обнинске. За рубежом первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 г. в Колдер-Холле (Великобритания). К кон. 20 в. в мире действовало св. 430 энергетических ядерных реакторов общей электрической мощностью ок. 370 тыс. МВт (в т. ч. в России – 21.3 тыс. МВт). Приблизительно одна треть этих реакторов работает в США, более чем по 10 действующих реакторов имеют Япония, Германия, Канада, Швеция, Россия, Франция и др.; единичные ядерные реакторы – многие другие страны (Пакистан, Индия, Израиль и т. д.). На АЭС вырабатывается ок. 15 % всей производимой в мире электроэнергии.
Схема атомной электростанции:
1 – источник водоснабжения; 2 – насос; 3 – генератор; 4 – паровая турбина; 5 – конденсатор; 6 – деаэраторы; 7 – очиститель; 8 – клапан; 9 – теплообменник; 10 – реактор; 11 – регулятор давления
Основными причинами быстрого развития АЭС являются ограниченность запасов органического топлива, рост потребления нефти и газа для транспортных, промышленных и коммунальных нужд, а также рост цен на невозобновляемые источники энергии. Подавляющее большинство действующих АЭС имеют реакторы на тепловых нейтронах: водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя); графитоводные (замедлитель – графит, теплоноситель – вода); графитогазовые (замедлитель – графит, теплоноситель – газ); тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода). В России строят гл. обр. графитоводные и водо-водяные реакторы, на АЭС США применяют в основном водо-водяные, в Англии – графитогазовые, в Канаде преобладают АЭС с тяжеловодными реакторами. Кпд АЭС несколько меньше, чем кпд ТЭС на органическом топливе; общий кпд АЭС с водо-водяным реактором составляет ок. 33 %, а с тяжеловодным реактором – ок. 29 %. Однако графитоводные реакторы с перегревом пара в реакторе имеют кпд, приближающийся к 40 %, что сопоставимо с кпд ТЭС. Зато АЭС, по существу, не имеет транспортных проблем: напр., АЭС мощностью 1000 МВт потребляет за год всего 100 т ядерного топлива, а аналогичной мощности ТЭС – ок. 4 млн. т угля. Самым большим недостатком реакторов на тепловых нейтронах является очень низкая эффективность использования природного урана – ок. 1 %. Коэффициент использования урана в реакторах на быстрых нейтронах гораздо выше – до 60–70 %. Это позволяет использовать делящиеся материалы с гораздо меньшим содержанием урана, даже морскую воду. Однако быстрые реакторы требуют большого количества делящегося плутония, который извлекается из выгоревших тепловыделяющих элементов при переработке отработанного ядерного топлива, что достаточно дорого и сложно.
Все реакторы АЭС снабжаются теплообменниками; насосами или газодувными установками для циркуляции теплоносителя; трубопроводами и арматурой циркуляционного контура; устройствами для перезагрузки ядерного топлива; системами специальной вентиляции, сигнализации аварийной обстановки и др. Это оборудование, как правило, находится в отсеках, отделённых от других помещений АЭС биологической защитой. Оборудование машинного зала АЭС примерно соответствует оборудованию паротурбинной ТЭС. Экономические показатели АЭС зависят от кпд реактора и другого энергетического оборудования, коэффициента использования установленной мощности за год, энергонапряжённости активной зоны реактора и т. д. Доля топливной составляющей в себестоимости вырабатываемой электроэнергии АЭС – всего 30–40 % (на ТЭС 60–70 %). Наряду с выработкой электроэнергии АЭС используются также для опреснения воды (Шевченковская АЭС в Казахстане).