Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

Читать онлайн Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 84
Перейти на страницу:

С помощью полупрозрачного зеркала фотон легко привести в состояние суперпозиции, представляющее собой смесь 50 на 50 двух трансляционных состояний. Когда фотон находится в состоянии суперпозиции, невозможно сказать, движется он по первому или по второму плечу прибора. Можно лишь сказать, что если мы выполним измерение, чтобы узнать, где фотон находится, это вызовет возмущение, которым невозможно пренебречь. Данное возмущение приведёт к тому, что состояние системы изменится, и, вместо того чтобы быть в обоих плечах интерферометра с равной вероятностью, фотон окажется либо в одном из них, либо в другом. Интерференционная картина рождается, когда волны амплитуды вероятности фотона интерферируют друг с другом. Две компоненты состояния суперпозиции — T1 и T2, из которых складывается совокупная волна амплитуды вероятности для фотона в приборе, — интерферируют друг с другом. Если выполняется наблюдение, позволяющее узнать, где находится фотон, он будет найден либо в первом, либо во втором плече интерферометра. Однако сам факт наблюдения меняет систему так, что она более не находится в состоянии суперпозиции. Амплитуда вероятности больше не состоит из двух частей, которые могут интерферировать друг с другом, и интерференционная картина исчезает. Таким образом, фотон в интерферометре — это реальное проявление идей, связанных с котами Шрёдингера.

Возвращаемся к фотоэлектрическому эффекту

В главе 4 фотоэлектрический эффект описывается в терминах фотонов, которые являются частицами, ведущими себя в некотором смысле наподобие световых пуль. Один фотон ударяет по одному электрону и выбивает его из куска металла (см. рис. 4.3). Это описание фотоэлектрического эффекта показывает, что классическое представление о свете как об электромагнитных волнах неверно. Для того чтобы объяснить фотоэлектрический эффект и одновременно тот факт, что фотоны порождают интерференционную картину, потребовалось ввести новую концепцию. Борновская интерпретация волновой функции как волны амплитуды вероятности придаёт фотону необходимые волноподобные характеристики, так что фотоны способны порождать интерференционную картину. Однако при обсуждении волн амплитуды вероятности в применении к интерферометру мы характеризовали положение фотона лишь с точностью до выбора одной из двух больших областей пространства; фотон находился в состоянии суперпозиции T1+T2 с равной вероятностью оказаться в первом или во втором плече интерферометра.

Фотоэлектрический эффект предполагает, что фотон весьма мал. В главе 6 будет показано, как суперпозиция волн амплитуды вероятности может породить фотон, имеющий очень маленькие размеры. Эти идеи приведут нас к центральному и самому неклассическому аспекту квантовой механики — принципу неопределённости Гейзенберга.

6. Размеры фотона и принцип неопределённости Гейзенберга

В главе 5 мы узнали, что фотон в интерферометре интерферирует сам с собой. Фотон в некотором смысле может находиться более чем в одном месте сразу. Положение фотона описывается волной амплитуды вероятности. Она не похожа на водяную, звуковую или даже классическую электромагнитную волну. Волна, ассоциируемая с фотоном (или с другими частицами вроде электронов), описывает вероятность обнаружения частицы в некоторой области пространства. В задаче с интерферометром (см. рис. 3.4 и 5.1) одиночный фотон находился одновременно в первом и во втором плечах прибора при равной вероятности обнаружить его в обеих этих областях пространства. Чтобы лучше понимать и описывать положение фотона, необходимо подробнее обсудить свойства волн. Нужно понять природу волн амплитуды вероятности, в особенности то, как они объединяются и что происходит, когда выполняются измерения.

Проще всего начать с задачи о свободной частице, которую мы обсуждали в главе 2. Свободная частица может быть фотоном, электроном или бейсбольным мячом. Свободной она является в том случае, если на неё не действуют никакие силы — нет ни гравитации, ни электрического или магнитного поля, ни фотонов, сталкивающихся с электроном, ни бейсбольных бит, ударяющих по мячу, ни сопротивления воздуха — ничего подобного. В отсутствие сил, действующих на частицу, она имеет строго определённый неизменный импульс. Таким образом, если она движется в определённом направлении, она будет просто продолжать двигаться в этом направлении. Можно выбрать для этого направления любое обозначение: пусть, например, это будет направление x. Представим себе график с горизонтальной осью x. Мы просто выберем направление этой оси x вдоль направления движения частицы. Обсуждая рис. 2.5, мы говорили о классической частице, движущейся вдоль оси x с классическим импульсом p. Здесь мы поговорим о квантовой частице с импульсом p.

Частицы имеют длину волны

Импульс фотона определяется уравнением p=h/λ, где h — постоянная Планка, λ — длина волны света. Таким образом, импульс связан с длиной волны (цветом) света. Луи Виктор Пьер Раймон, герцог Брольи{10}, получил Нобелевскую премию по физике в 1929 году

«за открытие волновой природы электрона».

Луи де Бройль теоретически показал, что такие частицы, как электроны или бейсбольные мячи, также имеют волновые свойства. Как рассказывается далее, волновое описание электронов, как и любых других типов частиц, даётся с помощью того же рода волн амплитуды вероятности, что были введены в главе 5 для описания фотонов.

Длина связанной с частицей волны равна λ=h/p. Это результат простого преобразования приведённой выше формулы для импульса фотона. Если обе части формулы для импульса фотона умножить на λ и разделить на p, то получится выражение для длины связанной с частицей волны. Важный результат, полученный де Бройлем, состоит в том, что связь между импульсом и длиной волны одинакова для фотонов (света) и для материальных частиц, таких как электроны и бейсбольные мячи. Поэтому свойства фотонов на фундаментальном уровне описываются точно так же, как свойства электронов и бейсбольных мячей. Длина волны, связанной с частицей, называется дебройлевской длиной волны. (В следующей главе мы покажем на физических примерах, почему кажется, будто бейсбольные мячи не обладают волновыми свойствами, тогда как у фотонов и электронов эти свойства заметны.)

Как выглядит волновая функция свободной частицы

Что представляет собой волновая функция свободной частицы с некоторым заданным значением импульса p? Вспомним, что волновая функция связана с вероятностью обнаружить частицу в некоторой области пространства. На рис. 6.1 представлен график волновой функции для свободной частицы с импульсом p. Как говорилось выше, длина волны связанной с этой частицей волновой функции равна λ=h/p. Из рисунка видно, что волновая функция свободной частицы представляется двумя волнами, которые называются действительной и мнимой компонентами волновой функции.

Рис. 6.1. Волновая функция свободной частицы с импульсом p, которая имеет длину волны λ=h/p. Квантовомеханическая волновая функция имеет две части, которые называются действительной и мнимой. Эти волны имеют одинаковую длину. Они лишь смещены одна относительно другой на четверть длины волны, что эквивалентно сдвигу на 90° по фазе. Эти две компоненты отделены друг от друга. Они не интерферируют ни конструктивно, ни деструктивно. Для свободной частицы с чётко определённым значением импульса p волновая функция простирается от плюс бесконечности до минус бесконечности (от +до −∞)

1 ... 10 11 12 13 14 15 16 17 18 ... 84
Перейти на страницу:
На этой странице вы можете бесплатно скачать Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...